257 research outputs found

    SPATIAL TARGETING STRATEGIES FOR LAND CONSERVATION

    Get PDF
    Purchasing development rights is a major mechanism for the protection of environmental quality and landscape amenities. This paper provides a targeting strategy for protecting multiple environmental benefits that takes into account land costs and probability of land use conversion. We compare two strategies. Subject to a budget constraint on parcel purchases, the standard strategy is to target parcels with the highest ratio of environmental benefits to land costs. The standard strategy selects parcels even if there is little probability that the parcel would otherwise be converted. Our new strategy targets parcels to minimize the benefit loss from land conversion, which weights parcel based on initial benefit endowment and expected probability of land use conversion. The empirical analysis focuses on targeting conservation easements in the exurban region of Sonoma County, CA, in which extensively-managed, developable parcels (i.e. pasture and forest areas) with environmental benefits are being converted to residential use and vineyards. Spatially-explicit modeling approaches are employed to estimate land values and likelihood of land use conversion, according to heterogeneous parcel site characteristics, for all developable parcels. Our results indicate that benefit-cost targeting is biased toward low cost parcels, since it ignores the variation in likelihood of future land use conversion. This inefficiency for benefit-cost targeting arises from the positive relationship that typically exists between likelihood of land use change and value of development rights. Hence, some parcels with poor land quality or remote accessibility to urban centers would have de facto conservation, and therefore do not warrant targeting of conservation funds, despite the low cost of protection. Our new targeting strategy balances the countervailing factors of land values and likelihood of land use conversion.Land Economics/Use,

    Habitat and open space at risk and the prioritization of conservation easements

    Get PDF
    Funds available to purchase land and easements for conservation purposes are limited. This article provides a targeting strategy for protecting multiple environmental benefits that includes heterogeneity in land costs and probability of land-use conversion, by incorporating spatially explicit land-use change and hedonic price models. This strategy is compared to two alternative strategies that omit either land cost or conversion threat. Based on dynamic programming and Monte Carlo simulations with alternating periods of conservation and development, we demonstrate that the positive correlation between land costs and probability of land-use conversion affects targeting efficiency using parcel data from Sonoma County, California.Environmental Economics and Policy,

    Avian Conservation Practices Strengthen Ecosystem Services in California Vineyards

    Get PDF
    Insectivorous Western Bluebirds (Sialia mexicana) occupy vineyard nest boxes established by California winegrape growers who want to encourage avian conservation. Experimentally, the provision of available nest sites serves as an alternative to exclosure methods for isolating the potential ecosystem services provided by foraging birds. We compared the abundance and species richness of avian foragers and removal rates of sentinel prey in treatments with songbird nest boxes and controls without nest boxes. The average species richness of avian insectivores increased by over 50 percent compared to controls. Insectivorous bird density nearly quadrupled, primarily due to a tenfold increase in Western Bluebird abundance. In contrast, there was no significant difference in the abundance of omnivorous or granivorous bird species some of which opportunistically forage on grapes. In a sentinel prey experiment, 2.4 times more live beet armyworms (Spodoptera exigua) were removed in the nest box treatment than in the control. As an estimate of the maximum foraging services provided by insectivorous birds, we found that larval removal rates measured immediately below occupied boxes averaged 3.5 times greater than in the control. Consequently the presence of Western Bluebirds in vineyard nest boxes strengthened ecosystem services to winegrape growers, illustrating a benefit of agroecological conservation practices. Predator addition and sentinel prey experiments lack some disadvantages of predator exclusion experiments and were robust methodologies for detecting ecosystem services

    Using Small-Scale Studies to Prioritize Threats and Guide Recovery of a Rare Hemiparasitic Plant: Cordylanthus rigidus ssp. littoralis

    Get PDF
    BACKGROUND: Recovering endangered species would benefit from identifying and ranking of the factors that threaten them. Simply managing for multiple positive influences will often aid in recovery; however, the relative impacts of multiple threats and/or interactions among them are not always predictable. We used a series of experiments and quantitative observational studies to examine the importance of five potential limiting factors to the abundance of a state-listed endangered hemiparasitic annual forb, Cordylanthus rigidus ssp. littoralis (C.r.l., California, USA): host availability, mammalian herbivores, insect seed predators, fire suppression, and exotic species. While this initial assessment is certainly not a complete list, these factors stem from direct observation and can inform provisional recommendations for management and further research. METHODOLOGY AND PRINCIPAL FINDINGS: Studies were conducted at five sites and included assessments of the influence of host availability, exotic species, exclusion of mammalian herbivores and insect seed predators on C.r.l. productivity, and simulated effects of fire on seed germination. C.r.l. was limited by multiple threats: individuals with access to host species produced up to three times more inflorescences than those lacking hosts, mammalian herbivory reduced C.r.l. size and fecundity by more than 50% and moth larvae reduced seed production by up to 40%. Litter deposition and competition from exotic plant species also appears to work in conjunction with other factors to limit C.r.l. throughout its life cycle. CONCLUSIONS AND SIGNIFICANCE: The work reported here highlights the contribution that a series of small-scale studies can make to conservation and restoration. Taken as a whole, the results can be used immediately to inform current management and species recovery strategies. Recovery of C.r.l. will require management that addresses competition with exotic plant species, herbivore pressure, and availability of preferred host species

    The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues in Ecology

    Get PDF
    Landscape connectivity, the extent to which a landscape facilitates the movements of organisms and their genes, faces critical threats from both fragmentation and habitat loss. Many conservation efforts focus on protecting and enhancing connectivity to offset the impacts of habitat loss and fragmentation on biodiversity conservation, and to increase the resilience of reserve networks to potential threats associated with climate change. Loss of connectivity can reduce the size and quality of available habitat, impede and disrupt movement (including dispersal) to new habitats, and affect seasonal migration patterns. These changes can lead, in turn, to detrimental effects for populations and species, including decreased carrying capacity, population declines, loss of genetic variation, and ultimately species extinction. Measuring and mapping connectivity is facilitated by a growing number of quantitative approaches that can integrate large amounts of information about organisms’ life histories, habitat quality, and other features essential to evaluating connectivity for a given population or species. However, identifying effective approaches for maintaining and restoring connectivity poses several challenges, and our understanding of how connectivity should be designed to mitigate the impacts of climate change is, as yet, in its infancy. Scientists and managers must confront and overcome several challenges inherent in evaluating and planning for connectivity, including: •characterizing the biology of focal species; •understanding the strengths and the limitations of the models used to evaluate connectivity; •considering spatial and temporal extent in connectivity planning; •using caution in extrapolating results outside of observed conditions; •considering non-linear relationships that can complicate assumed or expected ecological responses; •accounting and planning for anthropogenic change in the landscape; •using well-defined goals and objectives to drive the selection of methods used for evaluating and planning for connectivity; •and communicating to the general public in clear and meaningful language the importance of connectivity to improve awareness and strengthen policies for ensuring conservation. Several aspects of connectivity science deserve additional attention in order to improve the effectiveness of design and implementation. Research on species persistence, behavioral ecology, and community structure is needed to reduce the uncertainty associated with connectivity models. Evaluating and testing connectivity responses to climate change will be critical to achieving conservation goals in the face of the rapid changes that will confront many communities and ecosystems. All of these potential areas of advancement will fall short of conservation goals if we do not effectively incorporate human activities into connectivity planning. While this Issue identifies substantial uncertainties in mapping connectivity and evaluating resilience to climate change, it is also clear that integrating human and natural landscape conservation planning to enhance habitat connectivity is essential for biodiversity conservation

    Enhancing ecosystem services maps combining field and environmental data

    Get PDF
    Ecosystem service maps are increasingly being used to prioritize management and conservation decisions. Most of these maps rely on estimates of ecosystem services estimated for individual land cover classes rather than incorporating field data. We developed combined field models (CFM) using regression analysis to estimate ecosystem services based on the observed relationship between environmental and land cover data and field measurements of ecosystem services. Local ecosystem service supply was estimated from vegetation data measured at fifty sites covering the widest range of environmental conditions across a watershed in Mexico. We compared the accuracy of the CFM approach for forage, timber, firewood and carbon storage over a more commonly “look up table” method relying on a uniform estimate of ecosystem service supply by land cover type. The CFM revealed higher accuracy when compared to the “look up table” approach. The resulting CFM models explained a large fraction of the variance (42–89%) using a combination of land cover, remote sensing data, hydrology and distance from developed areas. In addition, mapping residuals from Geographically Weighted Regressions provided an estimate of uncertainty across the CFM model results. This approach provides better estimates of ecosystem service delivery and uncertainty for land managers and decision-makers

    Building development and roads: implications for the distribution of stone curlews across the Brecks

    Get PDF
    Background: Substantial new housing and infrastructure development planned within England has the potential to conflict with the nature conservation interests of protected sites. The Breckland area of eastern England (the Brecks) is designated as a Special Protection Area for a number of bird species, including the stone curlew (for which it holds more than 60% of the UK total population). We explore the effect of buildings and roads on the spatial distribution of stone curlew nests across the Brecks in order to inform strategic development plans to avoid adverse effects on such European protected sites. Methodology: Using data across all years (and subsets of years) over the period 1988 – 2006 but restricted to habitat areas of arable land with suitable soils, we assessed nest density in relation to the distances to nearest settlements and to major roads. Measures of the local density of nearby buildings, roads and traffic levels were assessed using normal kernel distance-weighting functions. Quasi-Poisson generalised linear mixed models allowing for spatial auto-correlation were fitted. Results: Significantly lower densities of stone curlew nests were found at distances up to 1500m from settlements, and distances up to 1000m or more from major (trunk) roads. The best fitting models involved optimally distance-weighted variables for the extent of nearby buildings and the trunk road traffic levels. Significance : The results and predictions from this study of past data suggests there is cause for concern that future housing development and associated road infrastructure within the Breckland area could have negative impacts on the nesting stone curlew population. Given the strict legal protection afforded to the SPA the planning and conservation bodies have subsequently agreed precautionary restrictions on building development within the distances identified and used the modelling predictions to agree mitigation measures for proposed trunk road developments

    The Importance of Conserving Biodiversity Outside of Protected Areas in Mediterranean Ecosystems

    Get PDF
    Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial), impacted (e.g., intensive, cultivated agriculture), or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands) but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75%) in this category and California-Mexico the least (48%). To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people live and work
    • …
    corecore