198 research outputs found

    SLIDES: Present and Future Status of Climate Change Computer Models

    Get PDF
    Presenter: Warren M. Washington, Senior Scientist, National Center for Atmospheric Research. 1 page and 25 slides. Abstract: A presentation will be given on the present and future status of climate change models. The evolution from simple climate models to fully complex Earth system models has led to an improved understanding of the causes of climate change and the impacts on the environment

    SLIDES: Present and Future Status of Climate Change Computer Models

    Get PDF
    Presenter: Warren M. Washington, Senior Scientist, National Center for Atmospheric Research. 1 page and 25 slides. Abstract: A presentation will be given on the present and future status of climate change models. The evolution from simple climate models to fully complex Earth system models has led to an improved understanding of the causes of climate change and the impacts on the environment

    Links between topography, wind, deflation, lakes and dust: The case of the Bodélé Depression, Chad

    Get PDF
    The Bodélé Depression, Chad is the planet's largest single source of dust. Deflation from the Bodélé could be seen as a simple coincidence of two key prerequisites: strong surface winds and a large source of suitable sediment. But here we hypothesise that long term links between topography, winds, deflation and dust ensure the maintenance of the dust source such that these two apparently coincidental key ingredients are connected by land-atmosphere processes with topography acting as the overall controlling agent. We use a variety of observational and numerical techniques, including a regional climate model, to show that: 1) contemporary deflation from the Bodélé is delineated by topography and a surface wind stress maximum; 2) the Tibesti and Ennedi mountains play a key role in the generation of the erosive winds in the form of the Bodélé Low Level Jet (LLJ); 3) enhanced deflation from a stronger Bodélé LLJ during drier phases, for example, the Last Glacial Maximum, was probably sufficient to create the shallow lake in which diatoms lived during wetter phases, such as the Holocene pluvial. Winds may therefore have helped to create the depression in which erodible diatom material accumulated. Instead of a simple coincidence of nature, dust from the world's largest source may result from the operation of long term processes on paleo timescales which have led to ideal conditions for dust generation in the world's largest dust source. Similar processes plausibly operate in other dust hotspots in topographic depressions

    Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern

    Get PDF
    Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range

    Ordovician K-bentonites in the Argentine Precordillera: relations to Gondwana margin evolution

    Get PDF
    Ordovician K-bcn Ionites have now been recorded from >20 localities in the vicinity of the Argentine Prccordillera. Most occur in I he eastern thrust belts, in the San Juan Limestone and the overlying the Gualcamayo Formation, but a few ash beds are known also from the central thrust belts. The oldest occur in the middle Arenig t. victorias iunatus grnplolite (Oe. evae conodont) Zone, and the youngest in the middle Llanvirn P. etegans (P. .tuecicas) Zone. Mineralogical characteristics, typical of other Ordovician K-bentonites, include a matrix of illite/smectite mixed-layer clay and a typical felsic volcanic phenocryst assemblage: biotite, beta-form quartz, alkali and plagioclase feldspar, apatite, and zircon, with lesser amounts of hornblende, clinopyroxene, tilanilc and Fe-Ti oxides. The proportions of the mineral phases and variations iii their crystal chemistry are commonly unique to individual (or small groups of) K-benlonite beds. Glass melt inclusions preserved in quartz are rhyolitic in composition The sequence is unique in its abundance of K-benlonite beds, but a close association between the Precordillera and other Ordovician sedimentary basins cannot be established.Theash distribution is most consistent with palacogeographical reconstructions in which early Ordovician drifting of the Precordillera occurred in proximity to one or more volcanic arcs, and with eventual collision along the Andean margin of Gondwana during the mid-Ordovician Ocloyic event of the Famalinian orogeny. The Puna-Famatina terrane northeast of the Precordillera might have served as the source of the K-bcnlonite ashes, possibly in concert with active arc magmatism on the Gondwana plate itself.Centro de Investigaciones Geológica

    Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara

    Get PDF
    Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002-0.57 wt. %) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM<0.1m. For all examined samples, the average iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4 % in magnetite, and 65% in ferric silicates. Structural iron in clay minerals may account for much of the iron in the ferric silicates. We estimate that the mean ferric oxides flux exported from the Bodélé Depression is 0.9 Tg/yr with greater than 50% exported as ferric oxide nanoparticles (<0.1m). The high surface-to-volume ratios of ferric oxide nanoparticles once entrained into dust plumes may facilitate increased atmospheric chemical and physical processing and affect iron solubility and bioavailability to marine and terrestrial ecosystems
    • …
    corecore