56 research outputs found

    Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero.

    Get PDF
    The causes of methane's renewed rise since 2007, accelerated growth from 2014 and record rise in 2020, concurrent with an isotopic shift to values more depleted in 13C, remain poorly understood. This rise is the dominant departure from greenhouse gas scenarios that limit global heating to less than 2°C. Thus a comprehensive understanding of methane sources and sinks, their trends and inter-annual variations are becoming more urgent. Efforts to quantify both sources and sinks and understand latitudinal and seasonal variations will improve our understanding of the methane cycle and its anthropogenic component. Nationally declared emissions inventories under the UN Framework Convention on Climate Change (UNFCCC) and promised contributions to emissions reductions under the UNFCCC Paris Agreement need to be verified independently by top-down observation. Furthermore, indirect effects on natural emissions, such as changes in aquatic ecosystems, also need to be quantified. Nitrous oxide is even more poorly understood. Despite this, options for mitigating methane and nitrous oxide emissions are improving rapidly, both in cutting emissions from gas, oil and coal extraction and use, and also from agricultural and waste sources. Reductions in methane and nitrous oxide emission are arguably among the most attractive immediate options for climate action. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'

    Care coordination experiences of people with traumatic brain injury and their family members in the 4-years after injury: a qualitative analysis

    Get PDF
    Title: Care coordination experiences of people with traumatic brain injury and their family members 4-years after injury: A qualitative analysis. Aim: To explore experiences of care coordination in the first 4-years after severe traumatic brain injury (TBI). Methods: A qualitative study nested within a population-based longitudinal cohort study. Eighteen semi-structured telephone interviews were conducted 48-months post-injury with six adults living with severe TBI and the family members of 12 other adults living with severe TBI. Participants were identified through purposive sampling from the Victorian State Trauma Registry. A thematic analysis was undertaken. Results: No person with TBI or their family member reported a case manager or care coordinator were involved in assisting with all aspects of their care. Many people with severe TBI experienced ineffective care coordination resulting in difficulty accessing services, variable quality in the timing, efficiency and appropriateness of services, an absence of regular progress evaluations and collaboratively formulated long-term plans. Some family members attempted to fill gaps in care, often without success. In contrast, effective care coordination was reported by one family member who advocated for services, closely monitored their relative, and effectively facilitated communication between services providers. Conclusion: Given the high cost, complexity and long-term nature of TBI recovery, more effective care coordination is required to consistently meet the needs of people with severe TBI.Sandra Braaf, Shanthi Ameratunga, Nicola Christie, Warwick Teague, Jennie Ponsford, Peter A. Cameron, Belinda J. Gabb

    Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort

    Get PDF
    This work was supported by the National Institute for Health Research (NIHR) and Genesis Breast Cancer Prevention Appeal (references GA10-033 and GA13-006). This article presents independent research funded by the NIHR under its Programme Grants for Applied Research (grant RP-PG-0707-10031). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The authors also acknowledge the support of Medical Research Council Health eResearch Centre grant MR/K006665/1

    Development of a Halotolerant Community in the St. Lucia Estuary (South Africa) during a Hypersaline Phase

    Get PDF
    Background: The St. Lucia Estuary, Africa’s largest estuarine lake, is currently experiencing unprecedented freshwater deprivation which has resulted in a northward gradient of drought effects, with hypersaline conditions in its northern lakes. Methodology/Principal Findings: This study documents the changes that occurred in the biotic communities at False Bay from May 2010 to June 2011, in order to better understand ecosystem functioning in hypersaline habitats. Few zooplankton taxa were able to withstand the harsh environmental conditions during 2010. These were the flatworm Macrostomum sp., the harpacticoid copepod Cletocamptus confluens, the cyclopoid copepod Apocyclops cf. dengizicus and the ciliate Fabrea cf. salina. In addition to their exceptional salinity tolerance, they were involved in a remarkably simple food web. In June 2009, a bloom of an orange-pigmented cyanobacterium (Cyanothece sp.) was recorded in False Bay and persisted uninterruptedly for 18 months. Stable isotope analysis suggests that this cyanobacterium was the main prey item of F. cf. salina. This ciliate was then consumed by A. cf. dengizicus, which in turn was presumably consumed by flamingos as they flocked in the area when the copepods attained swarming densities. On the shore, cyanobacteria mats contributed to a population explosion of the staphylinid beetle Bledius pilicollis. Although zooplankton disappeared once salinities exceeded 130, many taxa are capable of producing spores or resting cysts to bridge harsh periods. The hypersaline community was disrupted by heavy summer rains in 2011, which alleviated drought conditions and resulted in a sharp increase in zooplankton stock an

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights.

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around -28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range −55 to −49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around −59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was −59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around −28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around −37 to −36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.Natural Environment Research Council (NERC): NE/S00159X/1; NE/N016238/1; NE/P019641/

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands : The MOYA and ZWAMPS flights

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ 13 C CH 4 isotopic signatures were in the range -55 to -49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely -60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ 13 C CH 4 signatures were measured over the Amazonian wetlands of NE Bolivia (around -59‰) and the overall δ 13 C CH 4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was -59 ± 2‰. These results were more negative than expected. For African cattle, δ 13 C CH 4 values were around -60 to -50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3: C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ 13 C CH 4 values were around -28‰. By contrast, African C4 tropical grass fire δ 13 C CH 4 values were -16 to -12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ 13 C CH 4 around -37 to -36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ 13 C CH 4 values predicted by global atmospheric models are highly sensitive to the δ 13 C CH 4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'
    corecore