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Mammographic density adds accuracy to
both the Tyrer-Cuzick and Gail breast
cancer risk models in a prospective UK
screening cohort
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Sarah Sampson2, Lynne Fox2, Jamie C. Sergeant5,6, Michelle N. Harvie2, Mary Wilson2, Ursula Beetles2,
Soujanya Gadde2, Yit Lim2, Anil Jain2,4,7, Sara Bundred2, Nicola Barr8, Valerie Reece2, Anthony Howell2,9,
Jack Cuzick 1 and D. Gareth R. Evans2,9,10

Abstract

Introduction: The Predicting Risk of Cancer at Screening study in Manchester, UK, is a prospective study of breast
cancer risk estimation. It was designed to assess whether mammographic density may help in refinement of breast
cancer risk estimation using either the Gail model (Breast Cancer Risk Assessment Tool) or the Tyrer-Cuzick model
(International Breast Intervention Study model).

Methods: Mammographic density was measured at entry as a percentage visual assessment, adjusted for age and
body mass index. Tyrer-Cuzick and Gail 10-year risks were based on a questionnaire completed contemporaneously.
Breast cancers were identified at the entry screen or shortly thereafter. The contribution of density to risk models
was assessed using odds ratios (ORs) with profile likelihood confidence intervals (CIs) and area under the receiver
operating characteristic curve (AUC). The calibration of predicted ORs was estimated as a percentage [(observed vs
expected (O/E)] from logistic regression.

Results: The analysis included 50,628 women aged 47–73 years who were recruited between October 2009 and
September 2013. Of these, 697 had breast cancer diagnosed after enrolment. Median follow-up was 3.2 years.
Breast density [interquartile range odds ratio (IQR-OR) 1.48, 95 % CI 1.34–1.63, AUC 0.59] was a slightly stronger
univariate risk factor than the Tyrer-Cuzick model [IQR-OR 1.36 (95 % CI 1.25–1.48), O/E 60 % (95 % CI 44–74), AUC
0.57] or the Gail model [IQR-OR 1.22 (95 % CI 1.12–1.33), O/E 46 % (95 % CI 26–65 %), AUC 0.55]. It continued to
add information after allowing for Tyrer-Cuzick [IQR-OR 1.47 (95 % CI 1.33–1.62), combined AUC 0.61] or Gail
[IQR-OR 1.45 (95 % CI 1.32–1.60), combined AUC 0.59].

Conclusions: Breast density may be usefully combined with the Tyrer-Cuzick model or the Gail model.
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Introduction
Breast cancer risk models estimate the chance that a
woman will develop breast cancer in the future, and a more
accurate assessment is needed to guide prevention and
screening strategies [1]. Risk is often assessed using the Gail
(or Breast Cancer Risk Assessment Tool) and Tyrer-Cuzick
[or International Breast Intervention Study (IBIS)] models
[2–5]. The Gail model was originally developed using a
case–control study of women attending screening in the
United States [4] with invasive and ductal carcinoma in situ
(DCIS) cases, but the absolute rates are calibrated to inva-
sive cancer. The Gail model is based on eight questions, in-
cluding age, hormonal factors, benign disease and the
number of first-degree relatives affected by breast cancer,
and it has been validated to be well calibrated for the gen-
eral population [6]. The Tyrer-Cuzick model was developed
by pooling relative risks from overview studies and was ini-
tially used to assess eligibility for a prevention trial (IBIS-I)
[5]. It is calibrated to invasive and DCIS cancer rates and
includes many of the Gail risk factors, but some are han-
dled differently, including a more complex model for family
history of the disease. The Tyrer-Cuzick model has not
been validated to date in a prospective screening setting,
but it has been compared with the Gail model in cohorts
with a strong family history [7–9].
Mammographic density appears as white (radiopaque)

areas on a mammogram, and it is often measured visu-
ally as a percentage of the total breast area. Dense
breasts have more fibroglandular tissue and less fat than
non-dense breasts, and it is well established that women
with these features are at a higher risk of breast cancer
[10]. Density could be routinely measured when a
woman attends screening, but it is currently not incor-
porated in either the Tyrer-Cuzick model or the Gail
model. Some work to combine breast density with clas-
sical hormonal and familial risk factors has been based
on Breast Imaging-Reporting and Data System (BI-
RADS) visual density classification [11]. This has been
seen to produce a relative risk of approximately 2–4-fold
between the highest and lowest of four categories [12].
Results incorporating BI-RADS density into risk models
have been mixed [13]. Some have concluded that BI-
RADS density added minimally to the Gail model, but
others have shown that it adds useful additional infor-
mation to risk factors used with the Gail model [12, 14].
A limitation of BI-RADS density is that approximately
80 % women fall into the middle two categories where
the risk difference is more modest [12].
Another visually assessed density measure is the per-

centage of the area of the breast containing fibroglandular
tissue. Methods for this have been observed to produce a
4–6-fold risk difference for dense versus non-dense
breasts [15], and they predict response to tamoxifen pre-
vention [16] and both tamoxifen and aromatase inhibitors

in the adjuvant setting [17, 18]. Some previous work has
found continuous measures of percentage density to be
useful in combination with classical risk factors. In par-
ticular, Chen et al. [19] conducted a case–control study of
women recruited to a screening study in the United States
during the 1970s, and Warwick et al. [20] reported a
nested case–control study of women at high risk of breast
cancer from the IBIS-I trial, mostly in the 1990s. Visual
assessment has significant drawbacks, including the time
needed if using a computer-aided system such as Cumulus
[21], as well as inter- and intrareader variability [22]; how-
ever, for risk prediction, it is currently the standard by
which to judge newer methods because it has consistently
been shown to be a strong risk factor [15].
The objective of this study was to assess whether visu-

ally assessed percentage density might improve the
Tyrer-Cuzick and Gail risk models for risk assessment of
women attending screening in the United Kingdom. We
did so using a prospective screening cohort of women
enrolled in the Predicting Risk of Breast Cancer at
Screening (PROCAS) study from Manchester, UK [23].

Methods
Cohort
All women invited for routine mammographic screening
between October 2009 and September 2013 across 15
screening areas in Greater Manchester, UK, were mailed
a questionnaire, study information and a consent form. The
two-page questionnaire was designed to collect family
history as well as hormonal and lifestyle risk factors
for breast cancer (http://www.uhsm.nhs.uk/research/
Documents/PROCAS%20Questionnaire.pdf). Each com-
pleted questionnaire was imported into a database
and verified using a set of rules to check for incon-
sistencies. Screening mammograms were collected and
stored. The earliest mammograms were film (20 %),
but the majority used GE Senographe Essential full-
field digital mammography (GE Healthcare, Chalfont
St Giles, UK).

Ethics, consent and permissions
Consent was obtained at the time of screening. The
study was approved by Central Manchester Research
Ethics Committee (reference 09/H1008/81).

Study design
The primary clinical endpoint was diagnosis of breast can-
cer [International Classification of Diseases, Tenth revision,
codes C50/D05: invasive breast cancer/ductal carcinoma in
situ (DCIS)] from entry screen onwards, as identified
through the National Health Service Breast Screening
Programme (NHSBSP) system and the Somerset and North
West Cancer Intelligence services. In secondary analysis,
we considered invasive breast cancer only. Prospective
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breast cancers occurred between October 2009 and
September 2014, and the median follow-up was 3.2 years.
Cancers detected less than 100 days after enrolment were
defined as being detected at the entry screen.
Two widely used risk models were chosen before the

study began: (1) Tyrer-Cuzick (IBIS version 6.0: http://
www.ems-trials.org/riskevaluator/) [4] and (2) Gail (April
2014 version: http://www.cancer.gov/bcrisktool/) [5]. They
were used to assess 10-year risk. There were three limita-
tions of the questionnaire for the models: (1) limited infor-
mation regarding unaffected relatives was collected
(Tyrer-Cuzick); (2) previous breast biopsy included, but
not the number of biopsies (Gail); and (3) type of benign
disease (including proliferative disease and atypical hyper-
plasia) was not recorded (Tyrer-Cuzick). Unaided visually
assessed density was the primary density measure. It was
assessed using all available screening mammograms (usu-
ally four: craniocaudal and mediolateral oblique images of
both breast sides) and scored independently by two
readers on a standard visual analogue scale from 0 % to
100 %; percentages were scanned using computer soft-
ware. In total, 18 professionals assessed density; this group
consisted of 10 radiologists, 2 breast physicians and 6 ad-
vanced practitioner radiographers, many of whom had
participated in an earlier study of density [24].
The mean percentage from two readers and four mam-

mogram views was used for women without breast cancer,
and only the contralateral breast was used for all cancers.
For practical reasons, both the left and right breasts were
assessed for all participants, including those diagnosed
with breast cancer at the entry screen. Mammograms
were reread to assess any possible bias associated with in-
creasing density in those thought to have cancer. Four
readers who carried out the most readings reassessed the
densest 101 contralateral breasts from cancers diagnosed
at first screen and 101 non-cancers matched by density
and year of acquisition. Each mammogram was reread by
two readers independently and blinded to case status.
Overall, density when reread decreased in cancers (mean
49.5–44.2 %) and non-cancers (49.8–42.4 %), which was
likely due to regression to the mean from selecting the
highest-density mammograms. Density dropped by 2.0 %
(95 % CI −0.7 to 4.7 %) more for non-cancers than for
cancers (P = 0.182 by Wilcoxon test), so we concluded
that potential bias for risk was negligible.

Assay methods
Tumour pathology characteristics were assessed in a stan-
dardised manner as required by pathologists reporting in
the NHSBSP [25].

Statistical analysis
The study was designed so that 600 screen-detected and
interval breast cancers were expected between the first

two screening rounds. This gave the study approximately
90 % power at 5 % two-sided significance for detection
of an arbitrary breast cancer risk factor with a relative
risk of 1.3 and occurring in 50 % of the population, or
1.5 in 30 % of the population or 2.0 in 15 % of the
population.
Projected 10-year risk was taken as the primary pre-

dictor, partly because, in current UK guidelines [3], women
with a 5–8 % or greater than 8 % 10-year risk would qualify
for prevention and additional screening. Ten-year risk is
also the default in the Tyrer-Cuzick model.
Measurement error from breast density was assessed

by fitting a linear mixed-effects model by restricted max-
imum likelihood and corresponding intraclass correl-
ation coefficient [26]. Breast cancer risk factors used in
the models were summarised with categories for con-
tinuous factors chosen so that the reference group was
an established standard or an average containing ap-
proximately the middle half of the cohort. Adjusted odds
ratios (ORs) were estimated using a logistic regression
with age (continuous). Percentage mammographic dens-
ity was adjusted for age and body mass index (BMI) via
a ‘density residual’, obtained from fitting a linear regres-
sion of density against age, BMI and type of mammo-
gram (digital or film) [20] (see Additional file 1). This
helped to make density more independent of the risk
models, and combined density and risk model projec-
tions were obtained by multiplying Tyrer-Cuzick or Gail
model expected risk by observed breast density risk. In
analysis of risk factors, we used ORs, profile likelihood
confidence intervals (CIs) and likelihood ratio (LR) χ2

statistics from continuous predictors [each with 1 degree
of freedom (df )]. Logistic regression models were fitted
to assess the calibration of predicted logarithmic ORs,
and observed risk was the predicted risk multiplied by an
estimated calibration coefficient. Observed and expected
ORs were plotted using a normal kernel smoother with
bandwidth chosen by 10-fold cross validation [27], also
shown by decile of predicted risk. Calibration of absolute
risks was not assessed. The area under the receiver operat-
ing characteristic curve (AUC) was a secondary measure
of discrimination, with DeLong CIs [28]. Calibration and
discrimination were also assessed by age subgroups with a
likelihood-ratio test for interaction.
All P values were two-sided. Analysis was conducted

using GNU-R version 2.15.1 statistical software [29].

Results
Cohort
Between October 2009 and September 2013, 201,187
women were invited to breast cancer screening and
130,332 attended (65 %). Of these, 51,744 women (40 %)
consented to join the study; 750 had a breast cancer di-
agnosed from entry screen until the end of follow-up.
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To assess breast density as a risk factor, the following ex-
clusions were made: 756 who had a previous diagnosis
of breast cancer (29 with prospective cancer); 11 bilat-
eral breast cancers and 7 for whom the side was un-
known; 122 who had no visual assessment of breast
density available (2 prospective cancers); 14 who were
older than 73 years of age at enrolment (0 cancers); and
206 who had a breast implant (4 cancers). This left
50,628 women who were breast cancer–free before entry
screen, with 697 breast cancers diagnosed after enrol-
ment, of which 567 (81 %) were invasive, 128 were DCIS
and 2 were unknown.
The majority [n = 556 (80 %)] of cancers were diag-

nosed at entry screen, 28 (4 %) between 100 days and
2.5 years after enrolment and 110 (16 %) more than 2.5
years after enrolment. For three women, the timing was
unknown at the time of analysis. Ethnic or other origin
was recorded for 48,807 women (96 %), of whom 46,491
(92 %) were reported as white (453 Jewish); the remain-
der were Asian (n = 739), black (n = 556), mixed race of
ethnicity (n = 262) and other (n = 759).
The number of women per reader assessed for breast

density ranged from 104 to 16,121 [interquartile range
(IQR) 1600–9842]. The percentage variance in density
explained by reader differences was estimated to be 11 %.
Half of the absolute percentage differences between
readers were less than or equal to 10.00 %; the IQR was
4.75–17.75 %. The intraclass correlation coefficient be-
tween left and right sides was 93 %.

Analysis and presentation
Distributions of breast cancer risk factors in the cohort
are shown in Table 1. In summary, the majority of the
screening age cohort were postmenopausal (72 %) or
perimenopausal (18 %); 8 % were currently using hor-
mone replacement therapy. Most women were parous
(87 %), on average first giving birth when aged 24 years
(IQR 20–27), and most were overweight (62 % BMI >25
kg/m2). Twelve percent of women reported first-degree
relatives with breast cancer, and 14 % disclosed a prior
breast biopsy.
The risk models provided useful information for dis-

crimination (Table 2). The IQR-ORs were 1.22 for the
Gail model and 1.36 for Tyrer-Cuzick, but the AUCs
were modest at 0.55 and 0.57, respectively. The Tyrer-
Cuzick model had more than twice the amount of infor-
mation as the Gail model in terms of likelihood ratio χ2

(49.2 vs 19.7, respectively). However, the Gail model per-
formed better for cancers detected after entry screen
(see Additional file 1), for which the IQR-OR was 1.35
(95 % CI 1.11–1.62) compared with 1.36 (95 % CI 1.12–
1.63) for the Tyrer-Cuzick model. The findings were not
materially affected when we restricted attention to inva-
sive cancer (Table 2).

ORs derived from 10-year risks were not well cali-
brated, being 60 % (95 % CI 44–74 %) of expected for
Tyrer-Cuzick and 46 % (95 % CI 26–65 %) of expected
for the Gail model. Figure 1a, b provides a graphical il-
lustration in which the shrinkage in risk distribution is
reflected by the line of fit and risk deciles are less than
expected for the high-risk groups and more than ex-
pected for the low-risk groups.
Overall, the Gail model was not more informative than

age (AUC 0.55, 95 % CI 0.52–0.57). However, Table 3 shows
that it added independent information to age (LR χ2 9.2),
similarly for Tyrer-Cuzick (LR χ2 48.8). There was little evi-
dence of interaction by age group [Gail LR χ2 3.9 (df = 5),
P = 0.57; Tyrer-Cuzick, LR χ2 5.8 (df = 5), P = 0.33].
Visually assessed breast density was inversely correlated

with BMI (Spearman correlation coefficient −0.38) and age
(Spearman correlation coefficient −0.19). Density was less
for digital mammograms (median 24 %, IQR 14–37 %)
than for film (27 %, 15–44 %) (P < 0.001). It was higher in
women with cancer (median 28 %, IQR 18–41 %) than in
those without (24 %, 14–38 %) (P < 0.001). After adjusting
density for age, BMI and type of mammogram in the dens-
ity residual, we observed that the LR χ2 was doubled from
27.4 to 61.4, and it was a stronger univariate risk factor
than either model (IQR-OR 1.48, AUC 0.59).
Mammographic density added substantial significant

information to the models and increased the AUC by
0.04 for both (Table 2). An OR relative to the sample
mean was estimated for each woman from the risk
models alone and in combination with breast density.
Figure 1c shows the distributions of ORs, which demon-
strate that more women were accurately given high and
low risks when density was added. Table 4 cross-
tabulates incidence by risk groups from the models
alone and with density. Inspection similarly shows that
adding density helped to identify more high- and low-
risk women accurately and that the number of women
with a predicted Tyrer-Cuzick 10-year risk greater than
8 % was more than doubled, from 1.2 % to 2.7 %.
Most (80 %) of the cancers were diagnosed at entry,

but the distribution of breast density and residual was
similar in cancers diagnosed at screening versus later
(Fig. 2). Furthermore, the IQR-ORs for adjusted density
were 1.48 (95 % CI 1.32–1.64) at entry screen and 1.49
(95 % CI 1.20–1.85) thereafter (see Additional file 1).
This suggests that density was predictive of future can-
cer, as well as being a cross-sectional risk factor.

Discussion
The results of univariate analysis of breast cancer risk
factors shown in Table 1 broadly agreed with the litera-
ture [5]. In this predominately postmenopausal cohort,
age at menopause yielded the most information on the
basis of LR χ2 statistics. Age at menopause is not in the
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Table 1 Breast cancer risk factors in the cohort

Question Group No breast cancer Breast cancer OR (95 % CI) Univariate summarya Age-adjusted summarya

Age, yr <52 10,601 (21 %) 123 (18 %) 0.85 (0.69–1.04) 58 (52–64)

52–64 28,466 (57 %) 387 (56 %) 1.00 (reference) 1.30 (1.14–1.48)

>64 10,864 (22 %) 187 (27 %) 1.27 (1.06–1.51) 15.9 (P < 0.001)

Age at menarche, yr <12 11,298 (23 %) 168 (24 %) 1.09 (0.89–1.31) 13 (12–14)

12–13 20,817 (42 %) 285 (41 %) 1.00 (reference) 0.99 (0.90–1.08) 0.99 (0.90–1.08)

14+ 16,685 (33 %) 230 (33 %) 1.01 (0.84–1.20) 0.1 (P = 0.78) 0.1 (P = 0.77)

Missing 1131 (2 %) 14 (2 %) 0.90 (0.50–1.49)

Parous Yes 43,578 (87 %) 591 (85 %) 1.00 (reference)

No 6166 (12 %) 103 (15 %) 1.23 (0.99–1.51) 1.23 (0.99–1.51) 1.28 (1.03–1.58)

Missing 187 (0 %) 3 (0 %) 1.18 (0.29–3.12) 3.6 (P = 0.059) 5.0 (P = 0.026)

Age at birth of first child, yr <21 11,134 (26 %) 139 (24 %) 0.91 (0.74–1.11) 24 (20–27)

21–27 21,791 (50 %) 300 (51 %) 1.00 (reference) 1.09 (0.98–1.22) 1.13 (1.01–1.26)

>27 10,502 (24 %) 150 (25 %) 1.04 (0.85–1.26) 2.4 (P = 0.12) 4.4 (P = 0.037)

Missing 151 (0 %) 2 (0 %) 0.96 (0.16–3.03)

Age at menopause, yr <46 16,201 (47 %) 242 (47 %) 0.73 (0.56–0.93) 50 (45–51)

46–52 7933 (23 %) 86 (17 %) 1.00 (reference) 1.30 (1.16–1.46) 1.28 (1.14–1.44)

>52 4906 (14 %) 90 (18 %) 1.23 (0.96–1.56) 21.4 (P < 0.001) 18.4 (P < 0.001)

Missing 5321 (15 %) 95 (19 %) 1.20 (0.94–1.51)

BMI, kg/m2 <25 17,538 (35 %) 216 (31 %) 1.00 (reference) 26.5 (23.7–30.4)

25–30 16,633 (33 %) 241 (35 %) 1.18 (0.98–1.42) 1.10 (1.01–1.21) 1.11 (1.01–1.21)

30+ 12,442 (25 %) 192 (28 %) 1.25 (1.03–1.52) 4.6 (P = 0.033) 4.8 (P = 0.028)

Missing 3318 (7 %) 48 (7 %) 1.17 (0.85–1.59)

BMI premenopause, kg/m2 <25 1710 (38 %) 18 (31 %) 1.00 (reference) 26.2 (23.3–30.1)

25–30 1394 (31 %) 24 (41 %) 1.64 (0.89–3.07) 0.98 (0.71–1.33) 0.98 (0.70–1.32)

30+ 1087 (24 %) 14 (24 %) 1.22 (0.60–2.46) 0.0 (P = 0.92) 0.0 (P = 0.88)

Missing 322 (7 %) 3 (5 %) 0.89 (0.21–2.63)

BMI perimenopause, kg/m2 <25 3176 (36 %) 33 (34 %) 1.00 (reference) 26.4 (23.5–30.3)

25–30 2816 (32 %) 33 (34 %) 1.13 (0.69–1.84) 1.00 (0.77–1.27) 1.00 (0.77–1.27)

30+ 2151 (25 %) 25 (26 %) 1.12 (0.66–1.88) 0.0 (P = 0.99) 0.0 (P = 0.99)

Missing 601 (7 %) 7 (7 %) 1.12 (0.45–2.40)

BMI postmenopause, kg/m2 <25 11,918 (35 %) 157 (31 %) 1.00 (reference) 26.5 (23.8–30.4)

25–30 11,767 (34 %) 176 (34 %) 1.14 (0.91–1.41) 1.13 (1.02–1.25) 1.14 (1.02–1.26)

30+ 8603 (25 %) 144 (28 %) 1.27 (1.01–1.60) 5.2 (P =0.023) 5.5 (P = 0.019)

Missing 2073 (6 %) 36 (7 %) 1.32 (0.90–1.88)

First-degree relatives with breast cancer 0 44,269 (89 %) 595 (85 %) 1.00 (reference)

1 5257 (11 %) 92 (13 %) 1.30 (1.04–1.62) 1.32 (1.09–1.58) 1.30 (1.07–1.56)

2+ 405 (1 %) 10 (1 %) 1.84 (0.91–3.27) 7.8 (P =0.005) 7.0 (P = 0.008)

Biopsies No 41,311 (83 %) 530 (76 %) 1.00 (reference)

Yes 7174 (14 %) 136 (20 %) 1.48 (1.22–1.78) 1.48 (1.22–1.78) 1.45 (1.19–1.75)

Missing 14,46 (3 %) 31 (4 %) 1.67 (1.14–2.37) 15.0 (P < 0.001) 13.6 (P <0.001)

Current HRT by age group, yr, yes/no <58, no 23,758 (48 %) 286 (41 %) 1.00 (reference)

<58, yes 2529 (5 %) 29 (4 %) 0.95 (0.64–1.37) 1.12 (0.82–1.49) 1.43 (1.03–1.95)

58+, no 22,328 (45 %) 354 (51 %) 1.32 (1.13–1.54) 0.5 (P = 0.47) 4.7 (P = 0.031)

58+, yes 1316 (3 %) 28 (4 %) 1.77 (1.17–2.57)

HRT hormone replacement therapy, BMI body mass index, OR odds ratio, CI confidence interval
aSummary, first row: median [interquartile rage (IQR)], second row: IQR odds ratio (95 % confidence interval), third row: likelihood ratio χ2 (P-value)
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Table 2 Performance of risk models and breast density

No cancer, median
(IQR)

Cancer, median
(IQR)

IQR-ORa (95 % CI) IQR-ORb (95 % CI) LRa-χ2 LRb-Δχ2 AUCa (95 % CI) AUCb (95 % CI)

Primary: invasive + DCIS

Number of
women

49,931 697

Gail 3.50 % (2.90–4.40 %) 3.70 % (3.10–4.60 %) 1.22 (1.12–1.33) 1.21 (1.10–1.31) 19.7 0.55 (0.52–0.57)

Density residual −0.06 (−0.73–0.63) 0.24 (−0.40–0.91) 1.48 (1.34–1.63) 1.47 (1.33–1.62) 61.4 58.6 0.59 (0.57–0.61) 0.59 (0.57–0.61)

Tyrer-Cuzick 2.66 % (2.12–3.47 %) 2.94 % (2.28–3.97 %) 1.36 (1.25–1.48) 1.34 (1.23–1.45) 49.2 0.57 (0.55–0.59)

Density residual −0.06 (−0.73–0.63) 0.24 (−0.40–0.91) 1.48 (1.34–1.63) 1.45 (1.32–1.60) 61.4 54.8 0.59 (0.57–0.61) 0.61 (0.59–0.63)

Secondary: invasive

Number of
women

50,061 567

Gail 3.50 % (2.90–4.40 %) 3.70 % (3.00–4.55 %) 1.19 (1.07–1.31) 1.17 (1.06–1.29) 11.3 0.54 (0.52–0.56)

Density residual −0.06 (−0.73–0.63) 0.24 (−0.40–0.85) 1.47 (1.32–1.64) 1.46 (1.31–1.63) 48.5 46.6 0.59 (0.56–0.61) 0.59 (0.57–0.61)

Tyrer-Cuzick 2.66 % (2.12–3.47 %) 2.93 % (2.29–3.88 %) 1.33 (1.21–1.46) 1.30 (1.18–1.43) 33.6 33.6 0.57 (0.55–0.59)

Density residual −0.06 (−0.73–0.63) 0.24 (−0.40–0.85) 1.47 (1.32–1.64) 1.46 (1.31–1.63) 48.5 43.7 0.59 (0.56–0.61) 0.61 (0.58–0.63)

Gail 10-year risk, TC Tyrer-Cuzick 10-year risk, DR density residual, IQR interquartile range, OR odds ratio, CI confidence interval, LR likelihood ratio, AUC area under
the receiver operating characteristic curve
aUnivariate
bMultivariate (risk model + density)

Fig. 1 Calibration and spread of risk from the models and density. The predicted and observed odds ratios from (a) the Tyrer-Cuzick model and
(b) the Gail model in the cohort are shown. c Histogram of observed risk. O vs E is the estimate from a logistic regression of the logarithmic
predicted odds ratio. TC Tyrer-Cuzick 10-year risk, DR density residual
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Gail model, so this is part of the reason why overall the
Tyrer-Cuzick model performed better. It was also inter-
esting to note that a self-reported previous biopsy con-
ferred more information than did presence of affected
first-degree relatives. Mammographic density was a
stronger risk factor than the risk factors used by the
Tyrer-Cuzick or Gail models, after adjustment for age
and BMI.
Although the risk models were found to provide useful

information for risk stratification without mammo-
graphic density, their relative risks were not well cali-
brated. A partial reason is that some risk factors were
not as strong as expected, the most noticeable being
family history [30].
Our study differs from some other work in that we

used a percentage visual assessment rather than the
four-category BI-RADS scale. An advantage is that the

visual percentage is not designed to assess masking is-
sues, where dense tissue may make it more difficult to
detect cancer in mammograms. This is relevant because
in the most recent version (fifth edition) of the BI-RADS
scale, specific reference to percentage density was re-
moved [11] to focus on masking issues. It remains to be
seen if the change in emphasis and focus on masking
affect the distribution of BI-RADS density, as well as its
relationship with risk.
Earlier studies have also shown that continuous mea-

sures of percentage density are useful in combination with
classical risk factors. Chen et al. [19] used a case–control
study of women (majority aged 35–74 years) recruited
into a screening study in the United States during the
1970s and proposed a better model with some of the Gail
model factors, weight and categorised percentage density.
While their study demonstrated that density is very useful

Table 3 Model performance, by age group

Calibration: O/E (95 % CI) Discrimination: AUC (95 % CI)

Age group, yr Cases/total (%) Tyrer-Cuzick Gail Tyrer-Cuzick Gail

47–49 170/13,662 (1.2 %) 51 % (16–85 %) 43 % (−4–88 %) 0.57 (0.52–0.61) 0.54 (0.50–0.59)

50–54 125/10,677 (1.2 %) 52 % (14–89 %) 44 % (−8–93 %) 0.55 (0.49–0.60) 0.54 (0.49–0.59)

55–59 42/4312 (1.0 %) 70 % (−2–138 %) 33 % (−75–135 %) 0.58 (0.49–0.67) 0.53 (0.45–0.62)

60–64 147/8244 (1.8 %) 79 % (42–114 %) 17 % (−33–64 %) 0.62 (0.58–0.66) 0.52 (0.48–0.57)

65–69 173/10,926 (1.6 %) 44 % (10–76 %) 17 % (−29–60 %) 0.54 (0.50–0.59) 0.51 (0.46–0.55)

70–73 40/2807 (1.4 %) 122 % (54–188 %) 99 % (19–172 %) 0.64 (0.55–0.73) 0.58 (0.48–0.68)

O/E observed to expected odds ratio, CI confidence interval, AUC area under the receiver operating characteristic curve

Table 4 Breast cancer incidence cross-classified by 10-year risk groups from the Tyrer-Cuzick and Gail models when combined with
breast density

Risk model combined with density (10-year risk)

Risk model <1 % 1–2 % 2–3.5 % 3.5–5 % 5–8 % >8 % Total

Tyrer-Cuzick

<1 % 0/60 (0.0 %) 0/18 (0.0 %) 0/78 (0.0 %)

1–2 % 4/700 (0.6 %) 60/6910 (0.9 %) 18/1976 (0.9 %) 2/85 (2.4 %) 0/8 (0.0 %) 84/9679 (0.9 %)

2–3.5 % 0/6 (0.0 %) 69/7425 (0.9 %) 221/16,515 (1.3 %) 75/3807 (2.0 %) 16/652 (2.5 %) 1/24 (4.2 %) 382/28,429 (1.3 %)

3.5–5 % 0/29 (0.0 %) 21/2689 (0.8 %) 66/3139 (2.1 %) 35/1508 (2.3 %) 2/139 (1.4 %) 124/7504 (1.7 %)

5–8 % 3/144 (2.1 %) 20/1181 (1.7 %) 48/2257 (2.1 %) 16/758 (2.1 %) 87/4340 (2.0 %)

>8 % 0/2 (0.0 %) 5/172 (2.9 %) 15/424 (3.5 %) 20/598 (3.3 %)

Total 4/766 (0.5 %) 129/14,382 (0.9 %) 263/21324 (1.2 %) 163/8214 (2.0 %) 104/4597 (2.3 %) 34/1345 (2.5 %) 697/50,628 (1.4 %)

Gail

<1 %

1–2 % 0/17 (0.0 %) 5/601 (0.8 %) 5/257 (1.9 %) 0/14 (0.0 %) 10/889 (1.1 %)

2–3.5 % 0/1 (0.0 %) 33/4286 (0.8 %) 170/14,115 (1.2 %) 62/3894 (1.6 %) 15/756 (2.0 %) 0/42 (0.0 %) 280/23,094 (1.2 %)

3.5–5 % 1/90 (1.1 %) 68/7048 (1.0 %) 118/7751 (1.5 %) 75/3533 (2.1 %) 11/315 (3.5 %) 273/18,737 (1.5 %)

5–8 % 3/277 (1.1 %) 21/1851 (1.1 %) 63/3610 (1.7 %) 20/1105 (1.8 %) 107/6843 (1.6 %)

>8 % 0/15 (0.0 %) 8/316 (2.5 %) 19/734 (2.6 %) 27/1065 (2.5 %)

Total 0/18 (0.0 %) 39/4977 (0.8 %) 246/21,697 (1.1 %) 201/13,525 (1.5 %) 161/8215 (2.0 %) 50/2196 (2.3 %) 697/50,628 (1.4 %)

Bold cells indicate combinations that increased risk when density was added
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after allowing for classical factors, the model does not ap-
pear to be widely adopted in clinical practice, nor does it
seem to have been externally validated. Warwick et al.
[20] showed that density added to the Tyrer-Cuzick
model in a case–control analysis of relatively young
women (90 % aged 40–60 years), mostly from the United
Kingdom, who were at high risk of breast cancer, which is
a different source population than targeted in our present
study. An issue that affects the earlier studies is that they
recruited when film rather than digital mammography
was used, and when populations were less obese. Our
work adds to this literature by measuring how well com-
monly used risk estimation models performed in a UK
screening cohort, and by showing how these models might
be improved with breast density. The findings might help
to inform the design of risk-adapted screening and pre-
vention strategies in the United Kingdom and elsewhere.
Some limitations of the study include the following.

Firstly, the risk factors were self-reported via a question-
naire. Secondly, breast density was used to predict risk
at the same screen, and the subgroup analysis by time of
diagnosis since enrolment was limited. More follow-up

is needed to help to address this issue. Thirdly, the visu-
ally assessed score required human judgement, which
might make it unreliable for routine use in a screening
program [31], although the same applies to BI-RADS
density. Exploration of automated methods is ongoing in
a subset of the cohort. Fourthly, a possible limitation is
that the reader was able to partially identify which mam-
mograms had cancer at baseline. However, a small study
suggested such bias is negligible, and almost identical re-
lationships with breast cancer risk were observed in the
cancers diagnosed after the entry screen, which was also
found in an earlier screening study of the same density
measure [32]. Thus, we believe this bias is extremely
small, if present at all.
Two further criticisms might be made of the study.

Firstly, it might be argued that the Gail model predicts
the absolute risk of invasive cancer and does not include
DCIS. However, the relative risk model was fitted to in-
vasive cancer and DCIS [4], which is partial justification
for using this endpoint in the analysis. It was also speci-
fied before inspection of the data in a statistical analysis
plan that focused on relative risks rather than absolute

Fig. 2 Breast density and residual by time of diagnosis since enrolment. a and c Histograms and empirical cumulative distribution functions for
breast density. b and d Histograms and empirical cumulative distribution functions for age, body mass index and type of image adjusted residual.
The cancers are split into those diagnosed within 100 days of entry (<100-d) and more than 100 days (100-d+). A Wilcoxon test for the difference
between <100 days and 100+ days yielded P = 0.34 for visual analogue scale (VAS) and P = 0.98 for the residual.
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rates, and a secondary analysis of invasive cancers did
not suggest a bias against the Gail model from including
DCIS. Secondly, one might argue that the risk models
were designed to predict only future risk of women with
a negative mammogram. We feel that it is not unreason-
able to apply the implied relative risks from risk models
to a cross-sectional study, albeit with a recalibration, be-
cause previous work has found breast cancer risk factors
to have a similar magnitudes in case–control studies as
for cohorts (see, e.g., [30]). Further, many of the partici-
pants will have had a previous negative screening mam-
mogram, and we did not find a significant interaction
between model performance and age.

Conclusions
We used a prospective cohort from the United Kingdom
to test whether visually assessed mammographic density
added to the Tyrer-Cuzick and Gail models for women
who attend breast cancer screening. Discrimination mea-
sured by changes in LR χ2 was doubled, and a larger
proportion of women could be accurately classified to be
at more than a moderately high risk when density was
combined with either model. However, the AUC values
remained modest, so there is still more to be done.
To our knowledge, this study is the first in which the

Tyrer-Cuzick risk model has been evaluated in a pro-
spective screening setting. Although the analysis was
limited by the cross-sectional nature and issues such as
lead time, the Tyrer-Cuzick model was found to provide
useful information for risk assessment. The Gail model
has been well validated for use in North America, but in
this UK setting the Gail model was outperformed by the
Tyrer-Cuzick model.
In conclusion, the data in this report are of relevance

for designing improvements to the national screening
program in the United Kingdom. By combining the
Tyrer-Cuzick model with breast density, we identified 72 %
of the population which had an average or below average
risk of breast cancer, and they had proportionally fewer
breast cancers. Such results might be used to inform
modelling of the effect of different strategies for risk-
adapted screening and prevention.

Additional file

Additional file 1: Appendix 1. Density residual: description of
methods. Appendix 2: Table S1. Univariate and multivariate
performance of breast density and the Tyrer-Cuzick and Gail risk models,
subgroup analysis by time of cancer diagnosis. (PDF 396 kb)
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