466 research outputs found
Some mechanical design aspects of the European Robotic Arm
The European Robotic Arm (ERA) is a contribution to the Russian Segment of the International Space Station Alpha. It will start operating on the Russian Segment during the assembly phase. ERA is designed and produced by a large industrial consortium spread over Europe with Fokker Space & Systems as prime contractor. In this paper, we will describe some of the overall design aspects and focus on the development of several mechanisms within ERA. The operation of ERA during the approach of its end effector towards the grapple interface and the grapple operation is discussed, with a focus on mechanisms. This includes the geometry of the end effector leading edge, which is carefully designed to provide the correct and complete tactile information to a torque-force sensor (TFS). The data from this TFS are used to steer the arm such that forces and moments are kept below 20 N and 20 N.m respectively during the grappling operation. Two hardware models of the end effector are built. The problems encountered are described as well as their solutions. The joints in the wrists and the elbow initially used a harmonic drive lubricated by MoS2. During development testing, this combination showed an insufficient lifetime in air to survive the acceptance test program. The switch-over to a system comprising planetary gearboxes with grease lubrication is described. From these development efforts, conclusions are drawn and recommendations are given for the design of complex space mechanisms
Can Bangladesh produce enough cereals to meet future demand?
Bangladesh faces huge challenges in achieving food security due to its high population, diet changes, and limited room for expanding cropland and cropping intensity. The objective of this study is to assess the degree to which Bangladesh can be self-sufficient in terms of domestic maize, rice and wheat production by the years 2030 and 2050 by closing the existing gap (Yg) between yield potential (Yp) and actual farm yield (Ya), accounting for possible changes in cropland area. Yield potential and yield gaps were calculated for the three crops using well-validated crop models and site-specific weather,management and soil data, and upscaled to the whole country.We assessed potential grain production in the years 2030 and 2050 for six land use change scenarios (general decrease in arable land; declining ground water tables in the north; cropping of fallow areas in the south; effect of sea level rise; increased cropping intensity; and larger share of cash crops) and three levels of Yg closure (1: no yield increase; 2: Yg closure at a level equivalent to 50% (50% Yg closure); 3: Yg closure to a level of 85% of Yp (irrigated crops) and 80% of water-limited yield potential or Yw (rainfed crops) (full Yg closure)). In addition, changes in demand with low and high population growth rates, and substitution of rice by maize in future diets were also examined. Total aggregated demand of the three cereals (in milled rice equivalents) in 2030 and 2050, based on the UN median population variant, is projected to be 21 and 24% higher than in 2010. Current Yg represent 50% (irrigated rice), 48–63% (rainfed rice), 49% (irrigated wheat), 40% (rainfed wheat), 46% (irrigated maize), and 44% (rainfed maize) of their Yp or Yw. With 50% Yg closure and for various land use changes, self-sufficiency ratio will be N1 for rice in 2030 and about one in 2050 but well below one for maize and wheat in both 2030 and 2050. With full Yg closure, self-sufficiency ratios will be well above one for rice and all three cereals jointly but below one for maize and wheat for all scenarios, except for the scenario with drastic decrease in boro rice area to allow for area expansion for cash crops. Full Yg closure of all cereals is needed to compensate for area decreases and demand increases, and then even some maize and large amounts of wheat imports will be required to satisfy demand in future. The results of this analysis have important implications for Bangladesh and other countries with high population growth rate, shrinking arable land due to rapid urbanization, and highly vulnerable to climate change
Can Bangladesh produce enough cereals to meet future demand?
Bangladesh faces huge challenges in achieving food security due to its high population, diet changes, and limited room for expanding cropland and cropping intensity. The objective of this study is to assess the degree to which Bangladesh can be self-sufficient in terms of domestic maize, rice and wheat production by the years 2030 and 2050 by closing the existing gap (Yg) between yield potential (Yp) and actual farm yield (Ya), accounting for possible changes in cropland area. Yield potential and yield gaps were calculated for the three crops using well-validated crop models and site-specific weather,management and soil data, and upscaled to the whole country.We assessed potential grain production in the years 2030 and 2050 for six land use change scenarios (general decrease in arable land; declining ground water tables in the north; cropping of fallow areas in the south; effect of sea level rise; increased cropping intensity; and larger share of cash crops) and three levels of Yg closure (1: no yield increase; 2: Yg closure at a level equivalent to 50% (50% Yg closure); 3: Yg closure to a level of 85% of Yp (irrigated crops) and 80% of water-limited yield potential or Yw (rainfed crops) (full Yg closure)). In addition, changes in demand with low and high population growth rates, and substitution of rice by maize in future diets were also examined. Total aggregated demand of the three cereals (in milled rice equivalents) in 2030 and 2050, based on the UN median population variant, is projected to be 21 and 24% higher than in 2010. Current Yg represent 50% (irrigated rice), 48–63% (rainfed rice), 49% (irrigated wheat), 40% (rainfed wheat), 46% (irrigated maize), and 44% (rainfed maize) of their Yp or Yw.With 50% Yg closure and for various land use changes, self-sufficiency ratio will be N1 for rice in 2030 and about one in 2050 but well below one for maize and wheat in both 2030 and 2050. With full Yg closure, self-sufficiency ratios will be well above one for rice and all three cereals jointly but below one for maize and wheat for all scenarios, except for the scenario with drastic decrease in boro rice area to allow for area expansion for cash crops. Full Yg closure of all cereals is needed to compensate for area decreases and demand increases, and then even some maize and large amounts of wheat imports will be required to satisfy demand in future. The results of this analysis have important implications for Bangladesh and other countries with high population growth rate, shrinking arable land due to rapid urbanization, and highly vulnerable to climate change
Mission-oriented public policy and the new evaluation culture
In this chapter, our aim is to develop a framework to improve public policy-related evaluation practice for a more adaptive and anticipatory evaluation approach, better in tune with complex interactions and interdependencies that have emerged on our policy agenda today. One of the features of this space for interactions that is public policy is its mission orientation. Such an orientation is accompanied by the evolution of public policy instruments, which in turn necessitate new evaluation approaches. We are convinced that this requires developing a conceptual framework, which can be taken forward to test and further operationalise in situations where similar systemic transformations for policy development are elaborated upon. Based on our work on public-sector leadership, we are proposing a framework for evaluation in a more mission-driven and systems-based perspective. The framework seeks to take better into consideration the diversity of policy interventions at our disposal, ranging from traditional budgetary or legislative instruments to experimentation and piloting. Changes are identified in the very characteristics of the societal problems we are trying to solve, as well as in the nature of policy, both subsequently requiring a more multifaceted scope of evaluation, an emerging practice being towards a more mission-oriented one as well as a more nuanced approach depending on whether one is interested in the multi-organisational performance, policy service delivery or quality of outputs and impacts from policy initiatives and projects. The focus of evaluation in turn ranges from the accountability to evaluation criteria, timescale, motivation, as well as type of intervention used.fi=vertaisarvioitu|en=peerReviewed
Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis.
Tuberculous meningitis (TBM) is the most lethal form of tuberculosis, and new treatments that improve outcomes are required. We randomly assigned adults with TBM to treatment with standard antituberculosis treatment alone or in combination with ciprofloxacin (750 mg/12 h), levofloxacin (500 mg/12 h), or gatifloxacin (400 mg/24 h) for the first 60 days of therapy. Fluoroquinolone concentrations were measured with plasma and cerebrospinal fluid (CSF) specimens taken at predetermined, randomly assigned times throughout treatment. We aimed to describe the pharmacokinetics of each fluoroquinolone during TBM treatment and evaluate the relationship between drug exposure and clinical response over 270 days of therapy (Controlled Trials number ISRCTN07062956). Sixty-one patients with TBM were randomly assigned to treatment with no fluoroquinolone (n = 15), ciprofloxacin (n = 16), levofloxacin (n = 15), or gatifloxacin (n = 15). Cerebrospinal fluid penetration, measured by the ratio of the plasma area under the concentration-time curve from 0 to 24 h (AUC0–24) to the cerebrospinal fluid AUC0–24, was greater for levofloxacin (median, 0.74; range, 0.58 to 1.03) than for gatifloxacin (median, 0.48; range, 0.47 to 0.50) or ciprofloxacin (median, 0.26; range, 0.11 to 0.77). Univariable and multivariable analyses of fluoroquinolone exposure against a range of different treatment responses revealed worse outcomes among patients with lower and higher plasma and CSF exposures than for patients with intermediate exposures (a U-shaped exposure-response). TBM patients most likely to benefit from fluoroquinolone therapy were identified, along with exposure-response relationships associated with improved outcomes. Fluoroquinolones add antituberculosis activity to the standard treatment regimen, but to improve outcomes of TBM, they must be started early, before the onset of coma
Assessing public leadership styles for innovation:A comparison of Copenhagen, Rotterdam and Barcelona
This article explores which leadership qualities public managers regard as important for public innovation. It is based on a survey of 365 senior public managers in Copenhagen, Rotterdam and Barcelona. Five perspectives on leadership were identified and tested using a number of items. Some of these proved to be more robust than others. Analysis of the three cities reveals a nuanced set of leadership styles, which include a transformational style, and one that is more dedicated to motivating employees, risk-taking and including others in decision-making. This suggests the need for more research on leadership and public-sector innovation
Employee perceived effect of leadership training: comparing public and private organizations
This study reports on the effectiveness of a year-long field experiment involving training in transformational and transactional leadership in the public and private sectors. Using before and after training assessments by employees of several hundred Danish leaders, the analysis shows that transformational leadership training is associated with increases in behaviors linked to both transformational leadership and the use of verbal rewards, but only for public sector organizations. There is no impact in private sector organizations. Transactional leadership training appears to be equally effective in stimulating the use of pecuniary rewards in both public and private organizations
Assessing uncertainty and complexity in regional-scale crop model simulations
Crop models are imperfect approximations to real world interactions between biotic and abiotic factors. In some situations, the uncertainties associated with choices in model structure, model inputs and parameters can exceed the spatiotemporal variability of simulated yields, thus limiting predictability. For Indian groundnut, we used the General Large Area Model for annual crops (GLAM) with an existing framework to decompose uncertainty, to first understand how skill changes with added model complexity, and then to determine the relevant uncertainty sources in yield and other prognostic variables (total biomass, leaf area index and harvest index). We developed an ensemble of simulations by perturbing GLAM parameters using two different input meteorology datasets, and two model versions that differ in the complexity with which they account for assimilation. We found that added complexity improved model skill, as measured by changes in the root mean squared error (RMSE), by 5-10% in specific pockets of western, central and southern India, but that 85% of the groundnut growing area either did not show improved skill or showed decreased skill from such added complexity. Thus, adding complexity or using overly complex models at regional or global scales should be exercised with caution. Uncertainty analysis indicated that, in situations where soil and air moisture dynamics are the major determinants of productivity, predictability in yield is high. Where uncertainty for yield is high, the choice of weather input data was found critical for reducing uncertainty. However, for other prognostic variables (including leaf area index, total biomass and the harvest index) parametric uncertainty was generally the most important source, with a contribution of up to 90% in some cases, suggesting that regional-scale data additional to yield to constrain model parameters is needed. Our study provides further evidence that regional-scale studies should explicitly quantify multiple uncertainty sources
Rooting for food security in Sub-Saharan Africa
There is a persistent narrative about the potential of Sub-Saharan Africa (SSA) to be a 'grain breadbasket' because of large gaps between current low yields and yield potential with good management, and vast land resources with adequate rainfall. However, rigorous evaluation of the extent to which soils can support high, stable yields has been limited by lack of data on rootable soil depth of sufficient quality and spatial resolution. Here we use location-specific climate data, a robust spatial upscaling approach, and crop simulation to assess sensitivity of rainfed maize yields to root-zone water holding capacity. We find that SSA could produce a modest maize surplus but only if rootable soil depths are comparable to that of other major breadbaskets, such as the US Corn Belt and South American Pampas, which is unlikely based on currently available information. Otherwise, producing surplus grain for export will depend on expansion of crop area with the challenge of directing this expansion to regions where soil depth and rainfall are supportive of high and consistent yields, and where negative impacts on biodiversity are minimal
- …