2,492 research outputs found

    Fitness differences suppress the number of mating types in evolving isogamous species

    Get PDF
    Sexual reproduction is not always synonymous with the existence of two morphologically different sexes; isogamous species produce sex cells of equal size, typically falling into multiple distinct self-incompatible classes, termed mating types. A long-standing open question in evolutionary biology is: what governs the number of these mating types across species? Simple theoretical arguments imply an advantage to rare types, suggesting the number of types should grow consistently; however, empirical observations are very different. While some isogamous species exhibit thousands of mating types, such species are exceedingly rare, and most have fewer than 10. In this paper, we present a mathematical analysis to quantify the role of fitness variation—characterized by different mortality rates—in determining the number of mating types emerging in simple evolutionary models. We predict that the number of mating types decreases as the variance of mortality increases

    Thalamic nuclei in frontotemporal dementia: Mediodorsal nucleus involvement is universal but pulvinar atrophy is unique to C9orf72

    Get PDF
    Thalamic atrophy is a common feature across all forms of FTD but little is known about specific nuclei involvement. We aimed to investigate in vivo atrophy of the thalamic nuclei across the FTD spectrum. A cohort of 402 FTD patients (age: mean(SD) 64.3(8.2) years; disease duration: 4.8(2.8) years) was compared with 104 age‐matched controls (age: 62.5(10.4) years), using an automated segmentation of T1‐weighted MRIs to extract volumes of 14 thalamic nuclei. Stratification was performed by clinical diagnosis (180 behavioural variant FTD (bvFTD), 85 semantic variant primary progressive aphasia (svPPA), 114 nonfluent variant PPA (nfvPPA), 15 PPA not otherwise specified (PPA‐NOS), and 8 with associated motor neurone disease (FTD‐MND), genetic diagnosis (27 MAPT, 28 C9orf72, 18 GRN), and pathological confirmation (37 tauopathy, 38 TDP‐43opathy, 4 FUSopathy). The mediodorsal nucleus (MD) was the only nucleus affected in all FTD subgroups (16–33% smaller than controls). The laterodorsal nucleus was also particularly affected in genetic cases (28–38%), TDP‐43 type A (47%), tau‐CBD (44%), and FTD‐MND (53%). The pulvinar was affected only in the C9orf72 group (16%). Both the lateral and medial geniculate nuclei were also affected in the genetic cases (10–20%), particularly the LGN in C9orf72 expansion carriers. Use of individual thalamic nuclei volumes provided higher accuracy in discriminating between FTD groups than the whole thalamic volume. The MD is the only structure affected across all FTD groups. Differential involvement of the thalamic nuclei among FTD forms is seen, with a unique pattern of atrophy in the pulvinar in C9orf72 expansion carriers

    Recent experience with cognates and interlingual homographs in one language affects subsequent processing in another language

    Get PDF
    This experiment shows that recent experience in one language influences subsequent processing of the same word-forms in a different language. Dutch–English bilinguals read Dutch sentences containing Dutch–English cognates and interlingual homographs, which were presented again 16 minutes later in isolation in an English lexical decision task. Priming produced faster responses for the cognates but slower responses for the interlingual homographs. These results show that language switching can influence bilingual speakers at the level of individual words, and require models of bilingual word recognition (e.g. BIA+) to allow access to word meanings to be modulated by recent experience

    Hippocampal subfield volumetry: differential pattern of atrophy in different forms of genetic frontotemporal dementia

    Get PDF
    BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder, with a strong genetic component. Previous research has shown that medial temporal lobe atrophy is a common feature of FTD. However, no study has so far investigated the differential vulnerability of the hippocampal subfields in FTD. OBJECTIVES: We aimed to investigate hippocampal subfield volumes in genetic FTD. METHODS: We in6/2/2018vestigated hippocampal subfield volumes in a cohort of 75 patients with genetic FTD (age: mean (standard deviation) 59.3 (7.7) years; disease duration: 5.1(3.4) years; 29 with MAPT, 28 with C9orf72, and 18 with GRN mutations) compared with 97 age-matched controls (age: 62.1 (11.1) years). We performed a segmentation of their volumetric T1-weighted MRI scans to extract hippocampal subfields volumes. Left and right volumes were summed and corrected for total intracranial volumes. RESULTS: All three groups had smaller hippocampi than controls. The MAPT group had the most atrophic hippocampi, with the subfields showing the largest difference from controls being CA1-4 (24–27%, p < 0.0005). For C9orf72, the CA4, CA1, and dentate gyrus regions (8–11%, p < 0.0005), and for GRN the presubiculum and subiculum (10–14%, p < 0.0005) showed the largest differences from controls. CONCLUSIONS: The hippocampus was affected in all mutation types but a different pattern of subfield involvement was found in the three genetic groups, consistent with differential cortical-subcortical network vulnerability

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    Hmong Adults Self-Rated Oral Health: A Pilot Study

    Get PDF
    Since 1975, the Hmong refugee population in the U.S. has increased over 200%. However, little is known about their dental needs or self-rated oral health (SROH). The study aims were to: (1) describe the SROH, self-rated general health (SRGH), and use of dental/physician services; and (2) identify the factors associated with SROH among Hmong adults. A cross-sectional study design with locating sampling methodology was used. Oral health questionnaire was administered to assess SROH and SRGH, past dental and physician visits, and language preference. One hundred twenty adults aged 18–50+ were recruited and 118 had useable information. Of these, 49% rated their oral health as poor/fair and 30% rated their general health as poor/fair. Thirty-nine percent reported that they did not have a regular source of dental care, 46% rated their access to dental care as poor/fair, 43% visited a dentist and 66% visited a physician within the past 12 months. Bivariate analyses demonstrated that access to dental care, past dental visits, age and SRGH were significantly associated with SROH (P \u3c 0.05). Multivariate analyses demonstrated a strong association between access to dental care and good/excellent SROH. About half of Hmong adults rated their oral health and access to dental care as poor. Dental insurance, access to dental care, past preventive dental/physician visits and SRGH were associated with SROH

    Amygdala subnuclei are differentially affected in the different genetic and pathological forms of frontotemporal dementia

    Get PDF
    Introduction Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder with multiple genetic and pathological causes. It is characterized by both cortical and subcortical atrophies, with previous studies showing early involvement of the amygdala. However, no prior study has specifically investigated the atrophy of different subnuclei of the amygdala. Methods Using an automated segmentation tool for T1-weighted volumetric magnetic resonance imaging, we investigated amygdalar subnuclei (AS) involvement in a cohort of 132 patients with genetic or pathologically confirmed FTD (age: mean = 61 years (standard deviation = 8); disease duration: 5 (3) years) compared with 107 age-matched controls. Results AS were affected in all genetic and pathological forms of FTD. MAPT mutations/FTDP-17, Pick's disease, and transactive response DNA binding protein 43 kDa type C were the forms with the smallest amygdala (35%–50% smaller than controls in the most affected hemisphere, P < .0005). In most FTD groups, medial subnuclei (particularly the superficial, accessory basal and basal/paralaminar subnuclei) tended to be affected more than the lateral subnuclei, except for the progressive supranuclear palsy group, in which the corticoamygdaloid transition area was the least-affected area. Discussion Differential involvement of the AS was seen in the different genetic and pathological forms of FTD. In general, the most affected subnuclei were the superficial, accessory basal and basal/paralaminar subnuclei, which form part of a network of regions that control reward and emotion regulation, functions known to be particularly affected in FTD

    Automated Brainstem Segmentation Detects Differential Involvement in Atypical Parkinsonian Syndromes

    Get PDF
    OBJECTIVE: Brainstem segmentation has been useful in identifying potential imaging biomarkers for diagnosis and progression in atypical parkinsonian syndromes (APS). However, the majority of work has been performed using manual segmentation, which is time consuming for large cohorts. METHODS: We investigated brainstem involvement in APS using an automated method. We measured the volume of the medulla, pons, superior cerebellar peduncle (SCP) and midbrain from T1-weighted MRIs in 67 patients and 42 controls. Diagnoses were corticobasal syndrome (CBS, n = 14), multiple system atrophy (MSA, n = 16: 8 with parkinsonian syndrome, MSA-P; 8 with cerebellar syndrome, MSA-C), progressive supranuclear palsy with a Richardson’s syndrome (PSP-RS, n = 12), variant PSP (n = 18), and APS not otherwise specified (APS-NOS, n = 7). RESULTS: All brainstem regions were smaller in MSA-C (19–42% volume difference, p < 0.0005) and in both PSP groups (18–33%, p < 0.0005) than in controls. MSA-P showed lower volumes in all regions except the SCP (15–26%, p < 0.0005). The most affected region in MSA-C and MSA-P was the pons (42% and 26%, respectively), while the most affected regions in both the PSP-RS and variant PSP groups were the SCP (33% and 23%, respectively) and midbrain (26% and 24%, respectively). The brainstem was less affected in CBS, but nonetheless, the pons (14%, p < 0.0005), midbrain (14%, p < 0.0005) and medulla (10%, p = 0.001) were significantly smaller in CBS than in controls. The brainstem was unaffected in APS-NOS. CONCLUSION: Automated methods can accurately quantify the involvement of brainstem structures in APS. This will be important in future trials with large patient numbers where manual segmentation is unfeasible
    • 

    corecore