36 research outputs found

    Simulations of Collisional Effects in an Inner-Shell Solid-Density Mg X-Ray Laser

    Full text link
    Inner-shell Kα\alpha x-ray lasers have been created by pumping gaseous, solid, and liquid targets with the intense x-ray output of free-electron-lasers (FELs). For gaseous targets lasing relies on the creation of K-shell core-holes on a time-scale short compared with filling via Auger decay. In the case of solid and liquid density systems, collisional effects will also be important, affecting not only populations, but also line-widths, both of which impact the degree of overall gain, and its duration. However, to date such collisional effects have not been extensively studied. We present here initial simulations using the CCFLY code of inner-shell lasing in solid density Mg, where we self-consistently treat the effects of the incoming FEL radiation and the atomic kinetics of the Mg system, including radiative, Auger, and collisional effects. We find that the combination of collisional population of the lower states of the lasing transitions and broadening of the lines precludes lasing on all but the Kα\alpha of the initially cold system. Even assuming instantaneous turning on of the FEL pump, we find the duration of the gain in the solid system to be sub-femtosecond.Comment: This paper has been submitted to Philosophical Transactions

    Simulations of in situ X-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    Get PDF
    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as may occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases we compare our method with results obtained by taking the Fourier Transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α\alpha-ϵ\epsilon phase transition in iron, the α\alpha-ω\omega transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period

    Investigating mechanisms of state localization in highly ionized dense plasmas

    Get PDF
    Producción CientíficaWe present experimental observations of Kβ emission from highly charged Mg ions at solid density, driven by intense x rays from a free electron laser. The presence of Kβ emission indicates the n=3 atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense plasmas from first principles using finite-temperature density functional theory alongside a wave-function localization metric, and find excellent agreement with experimental results.This work has been supported by the Spanish Ministry of Science and Innovation under Research Grant No. PID2019-108764RB-I0

    Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL

    Get PDF
    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions

    Investigating Mechanisms of State Localization in Highly-Ionized Dense Plasmas

    Full text link
    We present the first experimental observation of Kβ_{\beta} emission from highly charged Mg ions at solid density, driven by intense x-rays from a free electron laser. The presence of Kβ_{\beta} emission indicates the n=3n=3 atomic shell is relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We explore the process of state relocalization in dense plasmas from first principles using finite-temperature density functional theory alongside a wavefunction localization metric, and find excellent agreement with experimental results.Comment: 22 pages, 13 figure

    Single Hit Energy-resolved Laue Diffraction

    Get PDF
    In-situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in-situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation

    Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth

    Get PDF
    Bismuth has long been a prototypical system for investigating phase transformations and melting at high pressure. Despite decades of experimental study, however, the lattice-level response of Bi to rapid (shock) compression and the relationship between structures occurring dynamically and those observed during slow (static) compression, are still not clearly understood. We have determined the structural response of shock-compressed Bi to 68 GPa using femtosecond X-ray diffraction, thereby revealing the phase transition sequence and equation-of-state in unprecedented detail for the first time. We show that shocked-Bi exhibits a marked departure from equilibrium behavior - the incommensurate Bi-III phase is not observed, but rather a new metastable phase, and the Bi-V phase is formed at significantly lower pressures compared to static compression studies. We also directly measure structural changes in a shocked liquid for the first time. These observations reveal new behaviour in the solid and liquid phases of a shocked material and give important insights into the validity of comparing static and dynamic datasets

    Femtosecond quantification of void evolution during rapid material failure

    Get PDF
    Understanding high-velocity impact, and the subsequent high strain rate material deformation and potential catastrophic failure, is of critical importance across a range of scientific and engineering disciplines that include astrophysics, materials science, and aerospace engineering. The deformation and failure mechanisms are not thoroughly understood, given the challenges of experimentally quantifying material evolution at extremely short time scales. Here, copper foils are rapidly strained via picosecond laser ablation and probed in situ with femtosecond x-ray free electron (XFEL) pulses. Small-angle x-ray scattering (SAXS) monitors the void distribution evolution, while wide-angle scattering (WAXS) simultaneously determines the strain evolution. The ability to quantifiably characterize the nanoscale during high strain rate failure with ultrafast SAXS, complementing WAXS, represents a broadening in the range of science that can be performed with XFEL. It is shown that ultimate failure occurs via void nucleation, growth, and coalescence, and the data agree well with molecular dynamics simulations

    A history of high-power laser research and development in the United Kingdom

    Get PDF
    The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years
    corecore