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Investigating mechanisms of state localization in highly ionized dense plasmas

Thomas Gawne ,1,* Thomas Campbell ,1 Alessandro Forte ,1 Patrick Hollebon ,1 Gabriel Perez-Callejo ,2

Oliver S. Humphries ,3 Oliver Karnbach ,1 Muhammad F. Kasim,1 Thomas R. Preston ,3 Hae Ja Lee ,4

Alan Miscampbell ,1 Quincy Y. van den Berg ,1 Bob Nagler ,4 Shenyuan Ren,1

Ryan B. Royle,1 Justin S. Wark ,1 and Sam M. Vinko 1,5

1Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
2Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, Valladolid, Spain

3European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
4SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA

5Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

(Received 9 February 2023; accepted 11 August 2023; published 19 September 2023)

We present experimental observations of Kβ emission from highly charged Mg ions at solid density, driven
by intense x rays from a free electron laser. The presence of Kβ emission indicates the n = 3 atomic shell is
relocalized for high charge states, providing an upper constraint on the depression of the ionization potential. We
explore the process of state relocalization in dense plasmas from first principles using finite-temperature density
functional theory alongside a wave-function localization metric, and find excellent agreement with experimental
results.
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I. INTRODUCTION

Continuum lowering (CL) is a fundamental process in
dense plasmas. When an atom is immersed in a plasma,
electrostatic interactions between the atom and the plasma
particles cause the continuum level of the atom to lower [1–4].
This reduces all atomic binding energies and can result in
ionization when the amount of CL exceeds the binding energy
of an electron. Continuum lowering has a direct impact on
many important plasma processes, including the ionization
and ion charge state distribution, the equation of state, the
opacity, and transport properties. A good understanding of the
physics behind the CL process is therefore vital to our ability
to predictively model high-energy density (HED) systems, in-
cluding those relevant to inertial confinement fusion research
[5] and to astrophysical plasmas [6].

Collisional-radiative atomic kinetics models are widely
used to understand the behavior of HED plasmas, and consti-
tute a key simulation framework needed to interpret the results
of x-ray spectroscopy experiments. Because these models es-
sentially deal with time-dependent ionization dynamics, they
require clear definitions of ionization, and, in particular, of
whether an electron is bound to some particular ion or not. Un-
bound electrons are considered free, and form a homogeneous
(and often classical) free-electron gas. In such simulations the
process of CL is commonly accounted for via an ionization
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potential depression (IPD) model. The IPD is an energy that
is subtracted from the electron binding energies in all ionic
charge states. It depends on the electron density, temperature,
and plasma ionization. As the name suggests, its effect is
to decrease the amount of energy required to ionize an ion.
Ionization potential depression is a crude representation of
an otherwise complex quantum many-body problem, but it is
chosen because of its computational convenience and simplic-
ity. For relatively hot systems, where IPD energies are small
compared with other energies in the system, this approach can
be adequate to represent the main effect of increasing electron
density on the energetics of the plasma. In contrast, IPD mod-
els tend to falter for dense systems at lower temperatures, in
particular for conditions where the mean particle separation
distance starts to become comparable to the plasma Debye
length, such as in warm dense matter.

There are many simple IPD models in use today. In the low-
temperature and high-density limit, the ion-sphere (IS) IPD
model is often used, the energy of which is evaluated from the
spatially uniform free-electron density inside a Wigner-Seitz
sphere [1–3]. At the opposite end, at high-temperatures and
low-densities, Debye-Hückel (DH) theory [2] is thought to
be applicable and the IPD is evaluated in terms of the Debye
screening length. At intermediate conditions the Stewart-Pyatt
(SP) model [3] is popular, while yielding the IS and DH
expressions at their respective limits. A modified version of
the Ecker-Kröll (EK) model [4,7] has enjoyed some renewed
popularity recently due to experimental results from the Linac
Coherent Light Source (LCLS) [8] free-electron laser (FEL)
at SLAC, but it has only been applied successfully to relatively
low-Z materials.

In recent years there has been a series of novel experi-
ments that attempted to measure the IPD in highly ionized
dense plasmas, and compare the experimental results with
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FIG. 1. Schematic of K, L, and M atomic shells, continuum level,
IPD, and related Kα and Kβ transitions, discussed in the text. An
additional hole in the K shell would give rise to a “double-K hole”
transition.

theoretical predictions. Much of this work relies on the
physics of atomic n = 1, 2, 3 orbitals (spectroscopically
called the K, L, and M shells, respectively), and the related
Kα and Kβ line emission. As we will use this nomenclature
often, we illustrate the various terms using a simple atomic
physics picture in Fig. 1.

An early experiment [9,10] at the LCLS measured the
K-edge energy for the first few charge states in solid density
Al plasmas containing cold ions and electrons heated up to
180 eV. With a FEL pulse duration of 80 fs, the ions remain
at low temperature throughout the duration of the pulse and
resulting Kα emission due to the ion temperature evolution
being dominated by electron-phonon interactions, which have
timescales of order several picoseconds [11–13]. This allowed
for CL to be examined at precisely known densities. The
experimentally inferred IPD showed good agreement with the
EK model [7], and poor overall agreement with the SP model.
Subsequent measurements by Ciricosta et al. [14] extended
this technique to measure the onset of Kα emission in Mg,
Al, Si, and various compounds of these materials. While the
EK model showed better consistency with the data, the overall
IPD of the full suite of materials could not be reproduced with
any single IPD model. Importantly, the authors reported they
were unable to detect any Kβ emission from higher charge
states, concluding that the M shell of the systems investigated
was likely pressure ionized due to high IPD.

The IPD of high-lying charge states was, in parallel, ex-
plored in experiments [15,16] conducted at the Orion laser
facility [17], where Al plasmas were driven to much higher
temperatures of 500–700 eV, and shock-compressed up to
around 3 times solid density. In contrast to the LCLS exper-
iments Kβ emission was observed, and was used to diagnose
the plasma conditions. In particular, the Lyβ and Heβ lines
were observed to vanish only at the highest densities achiev-
able, a result attributed to the pressure ionization of the n = 3
atomic shell. Compared with where the lines vanished in
the experiment, the EK model substantially over-predicted

the IPD for the reported experimental conditions, while the
SP model under-predicted it. This indicates that the true
value of CL should lie somewhere between the two, a find-
ing consistent with more detailed theoretical predictions by
Crowley [18].

Warm dense matter experiments conducted at higher den-
sities and lower temperatures have produced complementary
results to the experiments above. Measurements [19] of shifts
in the Kα and Kβ lines in Fe impurities in Be liners at
Sandia’s Z machine showed poor agreement with both the
EK and SP models. The plasma temperature reached 10 eV,
and the density reached 8 times solid density (electron density
ne � 2 × 1024 cm−3). In work at the OMEGA Laser Facility
[20], Fletcher et al. [21] compressed CH to around 7 times
solid density and heated it to 10–20 eV temperatures. They
find some agreement with the SP model, but in this regime the
differences between EK and SP models are negligible. How-
ever, similar experiments with CH capsules at the National
Ignition Facility [22] using spherically convergent shocks [23]
reaching higher temperatures of around 90 eV showed that the
SP, IS and EK models all likely under-predict the experimental
IPD. More recently, measurements [24] of the equation of
state along the principal shock Hugoniot of a hydrocarbon
(C9H10) showed an increase in the compressibility due to the
partial ionization of the C core orbitals. Theoretical models
that include electronic shell structure were better able to re-
produce the measured EOS than those that lacked detailed
structure, like the simple IPD models described above.

This rich collection of experimentally observed discrep-
ancies has spurred a flurry of theoretical investigations into
how best to model, predict, and understand, the effect
of IPD. Efforts have been made using ion-sphere models
[25–27]; Hartree-Fock-Slater calculations [28]; models based
on plasma theory [18,26]; classical molecular dynamic simu-
lations [29]; quantum statistical models [30–32]; Monte Carlo
methods [33]; and density functional theory calculations with
and without molecular dynamics [34–36]. Unfortunately, no
consistent agreement has emerged between all these methods,
but the majority of them do predict, as does the experimental
data, that the IPD should lie energetically somewhere between
the predictions of the SP and EK models. In this work we
seek to resolve some of the existing discrepancies across the
various theoretical modeling approaches, and present a first
principles understanding of continuum lowering based on the
localization and delocalization of states near the continuum of
a dense plasma.

We start by presenting experimental results showing how
M shell states localize in highly ionized Mg, resulting in
detectable Kβ line emission from high charge states includ-
ing Heβ . These emission lines are collected at exactly solid
density, with electron temperatures of order 100 eV. We
then develop a theory that allows us to quantify whether a
state is bound or free within the framework of finite-
temperature density functional theory (DFT), and introduce
the inverse participation ratio and a dimensionality parameter
to measure its boundness. We provide physical insight into
these methods using a few illustrative systems. We then ap-
ply these techniques to DFT simulations of systems in our
experimental conditions, and compare the predictions with ex-
perimental observations. Finally, we use our method to extract
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a first-principles IPD calculation for Mg and Al, and compare
it with simple analytical models. We also address some re-
maining discrepancies between our work and the earlier work
on Mg by Ciricosta et al. [14].

II. EXPERIMENTAL MEASUREMENTS

Isochoric heating experiments at x-ray FELs have shown
that it is possible to heat solid-density systems to temper-
atures approaching 200 eV on femtosecond scales [37–39],
and probe their excitation thresholds using x-ray emission
spectroscopy [9,40,41]. This method was successfully applied
to the study of ionization thresholds in Al, Mg, and other
systems, from which the behavior of the IPD could be stud-
ied as a function of ionic charge state [10,14]. Interestingly,
while copious amounts of Kα emission is promptly observed
from both single-core-hole (one vacancy in the 1s orbital)
and double-core-hole states (two vacancies in the 1s orbital),
these experiments found no radiative recombination from the
M shell in excited ions in the form of Kβ emission. Such
emission is routinely observed in laser-plasma experiments,
and is expected if the M shell is bound and populated in low-Z
simple metals like Al and Mg.

To investigate the presence of a bound M shell we per-
formed an experiment at the SXR endstation of the Linac
Coherent Light Source (LCLS) x-ray FEL, operating in SASE
mode. Thin foil samples of Mg and MgF2 were irradiated
with intense x rays at a range of photon energies between
1570–1670 eV. The samples used where 1-μm-thick Mg foils
deposited on a 10 μm Parylene N substrate, and coated with
30 nm Si3N4 to prevent sample deterioration and oxidation.
The MgF2 samples were similar, but without the Si3N4 coat-
ing. The emission spectrum was collected using a flat Beryl
(101̄0) natural crystal coupled to a charge-coupled device
detector, and integrated over 50 shots, providing a resolution
better than 0.4 eV within a spectral window between 1400–
1700 eV. Pulses of x rays operating with a nominal duration
of 60 fs, a spectral bandwidth of 0.4% FWHM, and an energy
of 1 mJ were focused on target to spot sizes on the order of
10 μm2 by means of a Kirkpatrick-Baez mirror [45], yielding
peak intensities reaching 1017 Wcm−2. The focus was opti-
mized in situ to maximize the double-core-hole emission from
the Mg sample. These parameters, and the experimental setup,
are broadly similar to previous isochoric heating experiments
at the LCLS, and further details can be found in Ref. [14].
As was observed in previous work, such plasmas created on
femtosecond timescales rapidly reach partial local thermody-
namic equilibrium, and the observed emission spectrum is
a good indicator of the plasma environment, containing hot
thermal electrons and cold ions still in their lattice structure
[41]. It was recently reported that for mid-Z metals such as
Mg, nonthermal electrons remain unimportant in determining
the short-time plasma kinetics and electron dynamics unless
intensities exceed 1017 Wcm−2, or for x-ray pulse durations
below 10 fs [46].

The x-ray photon energies were chosen to allow us to
resonantly pump the Mg10+ Kβ (Heβ) transition at the lowest
energies, and to ensure we were able to drive the system
above all single-core-hole K-edges at the highest energy. Co-
pious amounts of Mg10+ Kα (Heα) emission was observed,

FIG. 2. Spectra of Mg and MgF2 for different incoming FEL
photon energies. The intensity of the spectra has been normalized
and displaced vertically for clarity. The black arrows indicate the
double-K hole Kα lines. The energy of the atomic Kβ transitions
calculated using AAEXCITE [42–44] are indicated by the vertical
blue dashed lines. The labels refer to the charge state of the transition
line. For these spectra, there are broad peaks corresponding to the Kβ

transition lines for 8+, 9+ and 10+ Mg ions. The red open squares
indicate the incoming photon energy for each spectrum; in ascending
order for each material, these are: Mg: 1575 eV, 1585 eV, 1595 eV,
1605 eV, 1615 eV, 1630 eV, 1640 eV, 1655 eV, 1665 eV; MgF2:
1570 eV, 1580 eV, 1590 eV, 1600 eV, 1610 eV, 1620 eV, 1630 eV.

indicating that high intensities were reached in the experi-
mental setup, and demonstrating the successful creation of
a substantial number of highly charged ions. This is con-
sistent with previous measurements on Mg from Ref. [14].
However, unlike in previous work, we focused here on the
spectral window beyond the Kα emission from double core
holes that terminate with the Mg11+ Kα (Lyα) peak at around
1475 eV. We plot the measured emission from Mg and from
MgF2 in Fig. 2. The red open squares in the figures indicates
the resonance condition, where the photon energy of incident
x rays equals the emitted photon energy. On resonance, a small
but noticeable quasielastic scattering peak is seen for the Mg
sample, but not for MgF2. The spectra are normalized and
offset vertically for clarity.

At the lower emitted photon energy range, the spectra
show a rich forest of double-core-hole Kα emission peaks
indicated with black arrows. These correspond to spectral
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emission from bound-bound transitions of the group
K0 Lx → K1 Lx−1. The charge state is indicated using the
number of holes in the K and L shells, but ignoring higher
lying shells to simplify the notation. This means that 2+ is
the lowest meaningful charge state of Mg that can be pro-
duced as the 3s electrons delocalize into the continuum. The
10+ transition is thus a combination of the 1s02p2 → 1s12p1

and 1s02s12p1 → 1s12s12p0 transitions in a Mg ion with a
He-like core, together with any possible satellite lines con-
taining spectator electrons in the M shell. At energies above
the Lyα line we observe two broad peaks in all the Mg spectra,
associated with single-core-hole Kβ emission (K1 Lx My →
K2 Lx My−1, y = 1 for no spectators) for the Mg9+ and Mg10+

charge states. In the Mg spectra for incoming photon energies
of 1575–1605 eV, there is another broad peak corresponding
to the Mg8+ Kβ emission, though it appears to vanish at higher
incoming photon energies. The energies of these peaks are
similar to the equivalent atomic Kβ transitions, calculated
using the average approximation code AAEXCITE [42–44],
which are indicated by the vertical blue-dashed lines. As
with the double-core-hole Kα transitions, the charge state is
indicated using the number of holes in the K and L shells in
the lower state. The Kβ transition lines will therefore con-
sist of different configurations L shell configurations—such
as 1s12p13p1 → 1s22p1 and 1s12s13p1 → 1s22s1 for the 9+
transition—together with satellite lines containing M shell
spectator electrons. For clarity, we indicate only the lowest
energy atomic Kβ transitions in Fig. 2 with no spectator elec-
trons.

We note the presence of a dip in the spectrum for MgF2
just above the Heβ energy—this is an artefact due to the x-ray
crystal used in the spectrometer. A similar feature is seen for
the Mg data (not shown here) with the same crystal, but was no
longer present in the data once the crystal was changed. While
we were able to collect new spectroscopy measurements for
Mg, the same was not possible for MgF2 due to experimental
time constraints. This defect in the spectra makes establishing
the presence of Heβ emission challenging in MgF2, and in
general the presence of Kβ emission is difficult to determine
unambiguously for this material. However, at least three Kβ

emission lines can clearly be observed in Mg.
The Kβ emission is seen to be extremely weak, even when

compared with the intensity of the Lyα line, and is far weaker
than the Kα emission from the same sample. This may explain
why previous experiments such as Ref. [14] failed to observe
any emission in this region, even when attempting to reso-
nantly pump the lines with high intensity x rays. The presence
of Kβ emission is important in the context of IPD because it
indicates a relocalization of the M shell has taken place, and
thus allows theoretical predictions to be compared directly
with experiment. For example, in the context of simple models
used in time-dependent atomic kinetics modeling, the SP IPD
model predicts the M shell to be localized for most charge
states, while according to the EK model the M shell is always
pressure ionized. While it is well-documented via the shape of
the Kα emission spectrum that the SP model underestimates
the IPD in x-ray-driven solid-density systems [9,10,41], our
observation of Kβ emission in Mg indicates that the EK model
is no longer accurate for high charge states. This suggests a
need to review the interpretation of experimental results from

Ref. [14], but also motivates a more detailed examination of
the process of M shell relocalization in solid-density plasmas
from a theoretical standpoint.

III. THEORY OF STATE LOCALIZATION

A. Boundness and localization

Atomic kinetics simulations and IPD models require a bi-
nary picture of boundness. Electronic states are either purely
bound or purely free, but this is not a complete picture of
reality, especially in the hot dense plasma regime. However,
the binary picture is convenient, in that it is conceptually
simple and it allows for calculations of plasma conditions,
opacity, and spectral emission to be performed quickly and
efficiently. Recently, it has been shown that the ionization of
a system—which is a measure of how many electrons are
bound to an ion—can be related to the system’s total pressure
and the ion-ion pair distribution function [47], which provides
a tangible connection between first-principles calculations and
the binary picture. However, as this method deals with bulk
properties, it does not concern itself with which states are
bound or free, which is central to predicting spectra and
opacity.

Defining rigorously the boundness of a state is a nontriv-
ial problem. However, the following is expected: a purely
free state should be spatially extended throughout a plasma,
whereas one bound to an ion should be localized to some spe-
cific ion. The boundness of a state may therefore be associated
to its spatial localization. Within this work, spatial localization
is used to quantify the boundness of valence electronic states.
By doing so, localization mechanisms can be investigated in
a variety of scenarios, such as heating and compression. It
also will allow us to scrutinize the basis of IPD models, as
well as better justify which states are considered bound or
free in these models. The problem is then how to define the
spatial localization of a state. Typically, spatial localization
is determined directly from the spatial extent of a state. How-
ever, as we will discuss now, this is not a sufficient description
for boundness. Instead, boundness should be associated with
the response of the spatial extent of a state to changes in
the unit cell. For simplicity, the arguments that are presented
here be will be applied to simple unit cells. However, they
are trivially applicable to any repeating cell, including those
with less order requiring a larger collection of atoms to model,
e.g., a large supercell for a disordered warm dense matter
plasma.

To quantify the localization of a state, the state itself must
first be calculated at some level of theory. Here we choose
to use finite-temperature DFT [48,49] to calculate the wave
functions of the valence states, ψi(r), through the Kohn-Sham
(KS) equations [50]:

(
− h̄2

2me
∇2 + νeff (r)

)
ψi(r) = εiψi(r), (1)

where νeff is an effective potential containing the external po-
tential, the Hartree interaction, and the exchange-correlation
interaction terms, and εi is the KS energy of the ith state. The
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electron density of the finite-temperature N-orbital system is

n(r) =
N∑

i=1

f (εi; μ, T )|ψi(r)|2, (2)

where f (εi;μ, T ) is the occupation number of the state, given
by the Fermi-Dirac equation, for a system at electron tempera-
ture T with chemical potential μ. This approach is convenient
for two reasons. First, DFT makes no prior assumption on
the boundness of individual Kohn-Sham states, and both va-
lence and core states are treated on equal footing. Second,
because this method allows us to calculate the electronic
structure directly, any effect that would be considered to con-
tribute to continuum lowering in the plasma system is already
included self-consistently in the calculation of the ground
state wave function. In taking this approach we make two
assumptions. The first is that the Kohn-Sham wave functions
are a good proxy for the electrons we wish to study, and the
second is that our choice for exchange correlation functional
in νeff is sufficiently accurate to account for the many-body
physics of our dense plasma.

B. Localization of Bloch states

The DFT calculations in this work were performed in both
single primitive unit cells of crystals of the chosen materials
and in larger disordered supercells. In both cases, the electrons
are treated with finite-temperature, and the ions are fixed in the
crystal lattice. The difference is in the latter case, the ion po-
sitions are shifted from their perfect crystal lattice positions.
For clarity, unit cells are the smallest repeating cell that can be
infinitely repeated to describe a system—even though super-
cells are used to describe a disordered system, in practice they
are still infinitely repeating units of the system with a crystal
symmetry that is pushed out to larger distances. Therefore,
for both primitive cells and supercells, our KS states can be
described by Bloch wave functions, ψb,k(r):

ψb,k(r) = ub,k(r)eik·r, (3)

where r is the position vector, b is the band index, k is the
crystal momentum, and ub,k(r) is a periodic function that has
periodicity of the crystal lattice. Bloch states are spatially
extended: in a unit cell an arbitrary distance from the home
unit cell, they have nonzero amplitude. Instead, localization
is considered for the periodic function ub,k(r) in a single unit
cell. Spatially localized states—such as an atomic orbital or
bond—are described by a ub,k(r) that is localized within a
region of the unit cell. Extended states have significant overlap
with functions in other unit cells. Conceptually, this is similar
to Kohn’s theory of localization for insulating states [51],
except here it is considered on a state-by-state basis rather
than for the all-electron wave function. A Kohn-localized
wave function |ψ〉 that is periodic in a lattice is one that can
be decomposed into a sum of wave functions |ψM〉 that are
exponentially localized within disconnected regions M, such
as unit cells:

|ψ〉 =
∑

M

|ψM〉 . (4)

For localization, the overlap of |ψM〉 and |ψM′〉 is exponen-
tially vanishing for different regions M′ �= M. Localization

can therefore be considered within each unit cell rather than
across the whole lattice.

Multiple schemes exist to describe the localization of
Bloch states within the home unit cell. Typically, they involve
measuring the size of a state either by quantifying its spread
or by using a physical process, the strength of which depends
on the degree of spatial localization. Two common schemes
are the electron localization function (ELF) and Wannier
functions.

The ELF [52,53] is a function in real space that quantifies
regions in which electrons are localized by measuring Pauli
repulsion in the space of the unit cell. The function then takes
values 0 � ELF(r) � 1, with the limits representing strongly
delocalized to strongly localized, respectively. The ELF is
particularly useful for identifying bonding features. However,
the localization is only considered from the total density of
the system, so it is not practical to calculate the localization of
individual states.

The approach of Wannier functions [54] is to transform
the Bloch states from extended states to functions that are
localized. Localization can then be determined by the changes
in the spatial extent in the Wannier functions during a process
[55]. However, the transformation is gauge-invariant in the
mixing of groups of connected bands. While one is free to
choose a particular transformation, the interpretations drawn
from a Wannier function, including its localization, can be
very different depending on the choice of transformation,
and no choice can be said to be better than another [55].
While the freedom to choose the transformation scheme may
be desirable for some applications, here it is not. Instead, a
localization parameter that is not dependent on a chosen gauge
is preferable.

Fortunately, an approach that does not suffer from the lim-
itations described above can be found by computing inverse
participation ratios and the effective dimensionality of the
Kohn-Sham states. We will prefer this approach to study the
rebinding of states, and describe it in more detail in what
follows.

C. Inverse participation ratio localization

Kohn’s interpretation of localization says that well-
localized states do not significantly cross the walls of the unit
cell. This is a compelling picture. We note that this does not
preclude localized wave functions that are spatially large in
the unit cell; the only condition is that the overlap of two
functions in neighboring unit cells is exponentially vanishing.
An important implication is that the spatial spread of a wave
function does not provide a complete picture of localization.
It therefore seems prudent to compare the spatial extent of
wave functions that are extended or localized to see what
information can be extracted about their localization.

First, a measure of the spatial extent of the wave function
is required. A simple way to do this is with the inverse partic-
ipation ratio (IPR) [56,57]. For noninteracting states such as
KS states the IPR is a measurement of extent by quantifying
the portion of a space (real space, momentum space, number
of atoms in a crystal, etc.) for which a wave function is
significantly nonzero. For a wave function ψα (r) in a unit cell
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of volume V , the IPR is given by

I[ψα (r)] = (
∫

V |ψα (r)|2 dr)2

(
∫

V |ψα (r)|4 dr)
. (5)

The IPR is a bounded quantity, taking values between 0 �
I � V . In usual applications of the IPR, it describes the
localization of a state, with the limits having simple interpre-
tations: delocalized states, such as single plane waves (ψ =
V −1/2eiG·r), have I = V . Well-localized states, such as a δ

function, have I → 0. In other words, localized states occupy
a small volume of the cell while delocalized states fill most
of it. This follows the same spatial extent interpretations of
localization from the previous section. However, the size of
the wave function does not give a complete picture of its
localization. To illustrate this, consider two different model
functions in an isolated one-dimensional cell with lattice pa-
rameter a.

First, consider a box function:

ψbox(x) =
⎧⎨
⎩

0 if |x| > γ/2,

A/2 if |x| = γ /2,

A if |x| < γ/2,

(6)

where the normalization constant A = γ −1/2, and γ is the
width of the box (γ > 0). For γ < a, ψbox(x) is contained
entirely within the cell; it does not cross the walls of the box.
By Kohn’s definition of localization, a repeating set of these
functions in different unit cells would form a localized Bloch
function. The IPR of this function is

I[ψbox(x)] = γ , (7)

which is just the width of the box function. The function is
localized and has a finite size that could occupy a large portion
of the unit cell. Importantly, its IPR is independent of the
lattice parameter.

Next, consider the Gaussian function:

ψg(x) = Ae−x2/σ 2
, (8)

where σ is the width of the function (σ > 0) and A is the
normalization constant

A−2 = σ

√
π

2
erf

(
a√
2σ

)
, (9)

with erf (x) the error function [58]. In the limit that σ → 0,
ψg(x) becomes a δ function, δ(x). This function is plotted in
Fig. 3 for various ratios of r = a/σ . For this function, the
IPR is

I[ψg(x)] = σ
√

π
erf (r/

√
2)2

erf (r)
. (10)

The IPR is dependent on the volume of the cell, but the
dependence is nontrivial and is not a binary picture of bound
or free. The normalized IPR, NIPR = I/a, is plotted in Fig. 3.
There are two extremes for the IPR of this function. The
first is where r � 1 (i.e. σ 	 a, a well-localized function).
In this case, erf (r) → 1, and I = σ

√
π . Again the IPR can

take a finite value, but is independent of the size of the cell.
In the case of a δ function (σ → 0), the IPR is zero, as
expected. The other case is when r 	 1. This function is
completely delocalized as it significantly crosses the walls of

FIG. 3. Plots of ψg(x) [Eq. (8)], and its NIPR [Eq. (10)] and
dimensionality [Eq. (14)] for different ratios of the lattice parameter
to function size, r = a/σ . At r = 0.5, the wave function fills much of
the box, significantly crossing the walls of the unit cell. The dimen-
sionality therefore has a value equal to the number of dimensions of
the system (D = 1). As r increases, the function is increasingly local-
ized within the cell, corresponding to a decrease in dimensionality.
At r > 4.0, D = 0 and the functions are well-localized.

the unit cell. A Taylor expansion of the error function gives
erf (r) = 2√

π
[r − O(r3)], which leads to an I = a. The IPR

of the completely delocalized state is directly proportional to
the volume.
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In general, well-localized states, which may be considered
to be bound, have IPR values which are independent of the
cell volume. Completely delocalized states have I ∝ V . The
localization of a state can therefore be measured from its
volume dependence.

D. Localization from dimensionality

To overcome the general complexity of the IPR’s volume-
dependence, consider instead the response of the IPR when
the unit cell is expanded by a small amount. In real space, a
D-dimensional unit cell is drawn by its set of D lattice vectors,
which are given by primitive lattice vectors, pi = ∑D

j=1 pi, j x̂ j ,
and the set of lattice parameters, ai. The set of lattice vectors
are Ri = ai pi. The lattice vectors can be expressed in a matrix
(Ri ) j which can be used to determine the volume of the
unit cell:

V = det[(Ri ) j] = det[ai pi, j]. (11)

Expanding the lattice parameters of the unit cell by a
small amount ai → ai + δai, the volume increases to V ′ =
det[ai(1 + δai/ai )pi, j]. If all the lattice parameters change by
the same proportion δai/ai = δa/a = ε, then the expanded
volume can be expressed as

V ′ = det[ai(1 + ε)pi, j]

= (1 + ε)D det[ai pi, j]

= (1 + ε)DV. (12)

Now consider a fully delocalized state, which has I ∝ V .
The IPR of the delocalized state in the expanded cell is I ′ =
(1 + ε)DI. If ε 	 1, then I ′ ≈ (1 + Dε)I. The number of
dimensions of the system, D, of the fully delocalized state is
then given by

D = a

δa

I ′ − I
I = a

I
dI
da

, (13)

As will be shown below, Eq. (13) can be used to measure
the localization of a state. It is termed “dimensionality” as
it gives the effective number of dimensions in which a func-
tion is delocalized. For the three-dimensional unit cells used
here, a fully delocalized state, such as a plane wave, will
recover D = 3, indicating it is delocalized in all directions.
By comparison, a δ function has D = 0, a reflection of the
fact that a δ function is a zero-dimensional object, and it
does not respond to the increasing volume of the system. An
exact, logarithmic definition for D is clearly also a possibility.
However, we will prefer the definition given in Eq. (13) as
it also allows for a simpler interpretation: a measurement of
the rate at which a state changes size as the unit cell expands,
with the unit cell having D equal to the number of dimensions
in the system. This interpretation will be conceptually clearer
when the dimensionality is applied to more complex systems
where D < 0 and D > 3 may occur.

The dimensionality has simple interpretations: if D is
large, then the states are delocalized, with D = 3 indicating
complete delocalization. If D is small, then the states are
localized, with D = 0 indicating perfect localization. For a
three-dimensional case, D < 1 is typically a good indica-
tor of localization as the function is not delocalized in any

single dimension. Additionally, states with D < 0 may occur,
indicating “shrinking” as the unit cell expands, as well as
states with D > 3 indicating expansions faster than the unit
cell expands.

E. Dimensionality of model functions

Before discussing its application to real systems, it will be
informative to apply the dimensionality to the model wave
functions of Eqs. (6) and (8), in a one-dimensional unit cell
of size a. For the box function, ψbox(x), I = γ , which is
the width of the box. Importantly, the IPR is independent of
the volume of the cell. The dimensionality of this function is
therefore D = 0. This reflects the fact that expanding the box
does not change the IPR of the function, and so the state is
localized.

The dimensionality of ψg(x) is a smooth function that, like
the IPR, depends on the relative sizes of the unit cell to the
function, r:

D = 2r√
π

e−r2

[√
2e−r2/2erf

(
r√
2

)−1

− erf (r)−1

]
. (14)

Like the IPR, the dependence on r is nontrivial, but for the
purpose of determining localization all that is important is
single values of the dimensionality for a given a and σ .
Eq. (14) is plotted in Fig. 3, along with the functions for
various r for comparison. In the case of a localized ψg(x)
with r � 1, I ∝ σ . Again, the volume-independence of the
IPR for a localized function leads to D = 0. But, when r 	 1
and the state is delocalized, I = a. The dimensionality of this
state is then D = 1, recovering the number of dimensions of
the system for a fully delocalized state.

To show how the dimensionality reveals the number of de-
localized dimensions, we calculate the dimensionality of the
function �(x, y) = ψbox(x)ψg(y) in a two-dimensional unit
cell of size a × b. The width of ψbox(x) is γ , and for ψg(y)
it is σ . Trivially, the x direction will always be localized,
while the localization of the y direction will depend on σ .
In this simple case where the directions are decoupled from
each other, I[�(x, y)] = I[ψbox(x)] × I[ψg(y)]. Therefore,
the total IPR of the function is

I[�(x, y)] = √
πγσ

erf (b/
√

2σ )2

erf (b/σ )
. (15)

The IPR only depends on the lattice parameters through ψg(y).
The dimensionality of this function is therefore the same as
Eq. (14). In the localized limit of σ 	 b, the dimensionality
is D = 0 as �(x, y) is localized in all directions. It also reflects
that �(x, y) does not change size when the unit cell expands.
In the delocalized limit of σ > b, the dimensionality is D = 1,
indicating that the state is only delocalized in the y direction.
Equivalently, we can say that �(x, y) is expanding at half the
rate of the unit cell. For completeness, if the x direction is also
delocalized, then D → 2.

F. Effects of function overlap

So far, the model functions considered have been single
functions in isolated unit cells, such that there is no overlap
of functions between different unit cells or within unit cells.
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But, except for very well-localized states, there will often
be overlapping wave functions. We now examine the effects
of function overlap, and the additional dimensionalities it
allows for.

Consider the case of two functions in an isolated cell of
size a, which has a total wave function:

�(x) = ψg(x − a/4) + ψg(x + a/4), (16)

where ψg(x) is the Gaussian from Eq. (8). This situation is
equivalent to two atoms in an isolated unit cell with a single
orbital. Some examples are plotted in the top figure of Fig. 4
for different ratios r = a/σ , where σ is the width of ψg(x).
The IPR and dimensionality have an exact solution, but the
functional forms are significantly more complex than those
of Eqs. (10) and (14), so they are omitted here. The NIPR
and dimensionality of this function are also plotted in Fig. 4.
Two interesting features appear in the dimensionality plot:
first, the dimensionality is negative for r � 4.8, indicating a
“shrinking” effect for the wave function. Second, the dimen-
sionality goes above the number of dimensions in the system
(D > 1) for 2.4 < r < 3.2, indicating the function is expand-
ing faster than the unit cell.

The reason for this more complex localization behavior can
be understood in the overlap behavior of the functions. For
r = 1.0, when D still indicates the function is delocalized,
�(x) has a slight curvature that significantly crosses the walls
of the cell, with a similar shape to that of Fig. 3 function A.
At r = 10.0, when D = 0 and the function is well-localized,
the two peaks are well-distinguished and have little over-
lap. When r = 6.0, the peaks are distinguished, but there is
still a noticeable overlap between the functions. However,
increasing a reduces this overlap, which results in an effective
shrinking of the IPR, hence the dimensionality is negative.
Such dimensionalities represent a region of states relocalizing.
When D > 1, such as at r = 2.8, the function’s behavior is
more complex. Initially, before D > 1, the function is curved
much like for r = 1.0; as r increases so does the curvature
and the dimensionality decreases. However, at about r = 2.4,
the central part of the function flattens. This flat region grows
until about r = 3.2, at which point the two peaks begin to
separate out. The flat region of the function is a delocalized
region of the function. This results in the IPR growing with
a causing the dimensionality to increase after r > 2.0. For
a region 2.4 < r < 3.2, the growth is faster than the rate of
expansion of the unit cell, hence D > 1. Once the center of
the peaks separates enough that the peaks begin to become
distinguished, the IPR begins to decrease as a increases. The
functions therefore begin to relocalize again.

G. Dimensionality in real systems

The behavior of real systems is significantly more complex
than the simple functions examined thus far. Not only do the
wave functions take much more complex functional forms
than the model cases, one must also contend with the fact
that changing the lattice parameter also changes the solu-
tions to the KS equations. Increasing the lattice parameter
will change the potential the electrons interact with, as well
as changing the density of the system. Therefore, chang-
ing the lattice parameter will affect the solutions to the KS

FIG. 4. Plots of �(x) [Eq. (16)], and its NIPR and dimensionality
for different ratios of the lattice parameter to function size, r = a/σ .
σ is the width of ψg(x). The centers of the two orbitals are indicated
by the vertical black dashed lines. Two interesting features stand out:
at r � 4.8, D < 0; and D > 1 for 2.4 < r < 3.2, during which the
NIPR briefly increases.

equations and the minimization of the Mermin grand poten-
tial [49]. However, if the expansion is sufficiently small then
differences will be negligible, and the average dimensionality
should predominantly capture the response to expanding the
unit cell. However, if the expansion is too small, then the
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computed wave functions will be too similar to determine
the localization due to limits on computational accuracy. In
this work, δa/a = 0.1% was found to be sufficient to ensure
we capture the localization behavior: the eigenvalues change
by <0.5% (<0.61 eV absolute change) for all the materials,
so differences in the systems are small; while states with
known localizations, such as atomic L shells and high-energy
plane waves, had the expected dimensionalities of D < 1 and
D = 3, respectively, so changes are still meaningful.

It was found that D > 3 tends to occur just above the
continuum edge, which typically marks boundary between
localized and delocalized states, or “bound” and “free” states
in IPD models. The large dimensionality indicates these states
are very sensitive to the change in conditions, which is not un-
expected at the edge. From our model functions, this appears
to be due to growing overlaps in functions that are delocal-
ized. In testing with systems that had known localizations,
D < 0 was seen to occur with states that were expected to be
localized.

When the dimensionality is calculated for the individual
KS wave functions, there is large variation due to taking the
numerical derivative of KS states, and because the derivative
captures both the localization and changes in the KS system.
However, the average of the dimensionality is found to be at
the expected values, so it is the averaged dimensionality that
we consider. The averaging is done using a moving mean with
an energy window of 4 eV.

IV. DFT SIMULATIONS

We obtain the wave functions needed for our dimensional-
ity study via finite-temperature Kohn-Sham DFT simulations
using a locally modified version of the plane wave code
ABINIT v8.10.3 [59–61]. Modifications include the hybrid
scheme detailed in Sec. IV A, a module to calculate the IPR
of the real KS wave functions, and a finite-temperature local
density approximation (LDA) exchange-correlation (xc) func-
tional [62] for testing if explicit finite-temperature effects on
exchange-correlation are important.

To avoid spurious effects due to perfect symmetries in
primitive cells we model our system with supercells: 32 atom
(2 × 2 × 2) Al; 54 atom (3 × 3 × 3) Mg; and 48 atom (2 ×
2 × 2) MgF2. These sizes are kept relatively small to keep
the calculations computationally manageable. The ions were
evolved in a molecular dynamics simulation using ABINIT’s
isokinetic driver, with an ion temperature of 300 K in all
cases, and an electron temperature Te = 1 eV for Mg and
Al, and Te = 300 K for MgF2; the specific electron tempera-
tures are largely unimportant to the ion motion. The ions were
allowed to evolve for a large number of time steps (>1000)
after reaching equilibrium to provide a selection of different
ion positions over a few oscillations about the ions’ origins.
The ion positions therefore represent realistic deviations from
the perfect crystal lattice that would be seen in experimental
conditions. Static ground state calculations for a number of
different ion positions with the desired electron temperature
were then performed, and the dimensionality of the KS states
averaged over the different ion positions.

For efficiency the ion cores are modeled in the PAW pseu-
dopotential scheme [63], with the 1s orbital frozen in the

FIG. 5. Temperatures required to produce each average charge
state of the metal ion in Mg (blue circles), MgF2 (black squares), and
Al (red triangles). Note the ionization of 2 and 3 for Mg and Al in
the T → 0 limit, consistent with a metallic ground state containing
the full M shell in the delocalized conduction band.

core. The potentials were all generated for a ground-state
configuration at T = 0 K using the Atompaw code [64]. For
the temperatures considered in this work the thermal depopu-
lation of the 1s orbital is negligible, justifying this frozen core
approximation. In general, PAW potentials generated at zero
temperature can be applied in finite-temperature calculations
provided the frozen populations are set appropriately [65,66].

The xc functional plays a minor role in this work, as
we are mainly interested in studying the density of states
(DOS) and dimensionality, which we found to have little
dependence on the choice of xc model. For this, the PBE
form of the generalized gradient approximation (GGA) [67]
is known to perform well across multiple system, including
those which we are studying here. Nevertheless, we performed
a comparison of the DOS and the dimensionality for Mg and
MgF2 between the zero-temperature GGA-PBE and LDA-PW
[68] functionals, and the finite-temperature LDA functional
GDSMFB [62], at a few high temperature conditions. The
GDSMFB eigenvalues were slightly shifted compared with
results from GGA-PBE and LDA-PW, however the chemical
potential was also shifted by a similar amount. The ioniza-
tions, shape of the DOS, and the dimensionalities were the
same in all cases.

Our calculations are performed over a range of temper-
atures consistent with those reached in isochoric heating
experiments, as determined by time-dependent atomic kinet-
ics simulations. This enables a simple comparison with the
experimental data, while at the same time allowing us to
study how the dimensionality of the valence states changes as
the temperature is increased. The temperatures for the three
materials were chosen to thermally ionize integer numbers
of electrons from the L shells of the metal ions. We show
the temperatures required to produce each average charge
state of the metal ion in the DFT calculations in Fig. 5.
The temperatures required to substantially thermally ionize
a Mg ion are considerable, which poses fundamental chal-
lenges to KS DFT. To resolve this we have implemented
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the hybrid Kohn-Sham plane-wave-approximation scheme
(KS-PWA) for high-temperature work by Zhang et al. [69],
which we outline briefly in the following section.

As we are primarily interested in the DOS and the di-
mensionality, simulation parameters were chosen to converge
these properties. The dimensionality was more challenging
to converge than the DOS, so once the dimensionality was
converged, so was the DOS. Good convergence was consid-
ered to be reached once the dimensionality did not change
substantially so that the localization of the states could be de-
termined. In practice, this means that systems were converged
until the maximum absolute differences in the dimensionality
was <0.2 and a mean absolute difference of <0.03. The
largest differences in the dimensionality were generally in
small energy regions, and the localization of these regions
could still be determined. With the KS-PWA scheme, our
static supercell calculations could be performed with just 2200
bands for Al and MgF2, and 4400 bands for Mg, which gives
good convergence of the calculations, and a DOS sampled
up to sufficiently high energies for our study. The energy of
the highest states is also well within the regime of the hybrid
scheme [70], and the shape of the DOS and the states having
D = 3 confirmed we reached the plane wave limit. As super-
cell calculations were performed, the DOS and dimensionality
are averaged over a number of different ion positions until
they are converged: 18 positions for Al and MgF2, and 14
for Mg. While the definitions of IPR and dimensionality do
not explicitly consider the ion centers, the form of a wave
function—and so its eigenvalue for the DOS—does depend on
local density conditions, and experimentally it is an average
over different local conditions that is measured. Only the
gamma point is sampled in the Brillouin zone (BZ) as the
size of the BZ is greatly reduced by the disorder and large lat-
tice parameters of the supercells. Furthermore, sampling just
the gamma point excludes symmetry effects. A plane wave
cutoff energy of 25 Ha for sampling the PAW pseudo-wave
functions, and 50 Ha for sampling the real wave functions,
was found to be sufficient for converging for the dimensional-
ity parameter and the eigenvalues.

Hybrid scheme for high temperatures

Finite-temperature KS DFT simulations are typically lim-
ited to temperatures of a few 10s of eV. The reason for this lies
in the Fermi-Dirac distribution, which gives the occupation of
states calculated in DFT:

f (ε; μ, T ) = 1

1 + exp((ε − μ)/kBT )
, (17)

where ε is the energy of the state, μ is the chemical potential,
and T is the (electronic) temperature. For temperatures up
to around the Fermi temperature the number of states that
need to be considered is relatively small as the occupation
number quickly tends to zero at energies above the Fermi
level. However, as the temperature increases above the Fermi
temperature the occupation number of states far above the
Fermi level quickly becomes considerable. This causes two
issues: first, a large number of states must be treated in the
DFT simulation to perform an accurate calculation of the total
energy; and second, the kinetic cutoff energy needs to be very

high to access these states. Increasing the number of states and
the kinetic cutoff energy quickly raises the computational cost
of performing finite-temperature calculations.

Previous experimental work at x-ray FELs have reported
peak electron temperatures approaching 200 eV [9,41], a
value some 20 times higher than the Fermi energy. Performing
such calculations using traditional KS DFT is prohibitively
expensive. While alternative approaches such as orbital-free
molecular dynamics (OFMD) are better suited to treating high
temperature conditions, they cannot be used here as we need
access to the orbitals directly to study state rebinding.

A recently proposed hybrid scheme by Zhang et al. seeks
to address these challenges by merging aspects of Kohn-
Sham DFT with orbital-free DFT [69]. We call this method
KS-PWA DFT. Zhang et al. observe that above a sufficiently
high-energy, electronic states begin to behave as single plane
waves. Therefore, the contribution of high-energy states to
the electron density and the functionals of the Mermin grand
potential are simple integrals. These integrals are much faster
to calculate than solving the KS equations for these states. The
hybrid scheme then divides the calculations into two regimes,
separated by a cutoff energy εC . Below εC , where interest-
ing, state-based physics occurs, the Kohn-Sham equations and
functionals are still solved in the normal way. Above εC , the
states are assumed to behave as single plane waves, and the
integral contributions are added as corrections to the density
and to the Mermin grand potential functional calculated from
the KS part of the scheme.

This scheme allows us to perform a KS DFT calculation
up to arbitrary temperature at the cost of orbital-free DFT
while still calculating the full state structure across the lower
valence band. We have implemented this scheme in ABINIT
v8 for the purpose of the work presented here. As one defines
the number of bands to be used in an ABINIT calculation, the
cutoff energy is determined by the energy along the uppermost
band explicitly calculated. With this scheme, calculations in
primitive unit cells can be performed efficiently at tempera-
tures in excess of 150 eV using only a few hundred bands,
whereas it would take many thousands of bands if done using
the standard KS DFT method. Equally, plane wave cutoff
energies do not need to be as high. The integral corrections
required do not add significant computational overhead when
compared with standard systems with an equal number of
bands, k-points, and plane wave energy cutoff.

V. RESULTS

A. Dimensionality in the low-temperature metallic limit

To validate dimensionality as a localization parameter, we
apply our dimensionality metric to ground state calculations
of a simple metal (Mg) and an ionic compound (MgF2). The
orbitals of isolated atoms are completely localized around the
core. However, this behavior changes at higher densities when
an atom can feel the presence of many other neighboring
atoms. In the case of metallic Mg, the 3s electrons delocalize
to form the conduction band, a continuum that keeps the Mg
atoms together. In MgF2, the 3s electrons from the Mg ions
relocalize around the F sites to fill the F L shell. In both cases,
the K- and L shell states of the Mg and F ions are localized.
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FIG. 6. Dimensionality (red solid line) and density of states
(black dotted line) of Mg and MgF2 in the ground state. The localized
L shells of the ions have D < 1, while the continuum has D � 2
and D = 3 at high energies. This demonstrates the dimensionality
correctly predicts localization of states in a simple metal and an ionic
compound.

In terms of the dimensionality parameter, the well-localized
2s and 2p orbitals should have D < 1. The simple metal will
also have a delocalized continuum, with the continuum having
D = 3 when it has the form of the free electron DOS. The
dimensionality, along with the DOS, is plotted in Fig. 6 for
the two systems.

In both cases, the L shells have D < 1, indicating these
states are localized, as expected. In Mg, the continuum has
D � 3, showing the dimensionality can identify both localized
and delocalized states. Additional KS states can be included
in the calculation without affecting the results when their
occupation number is zero. The unoccupied continuum states
of MgF2 are included in Fig. 6; they are also delocalized.
In both Mg and MgF2, when the eigenenergy of the states
is >75 eV the dimensionality of the states is very close to
a value of 3, indicating the single plane wave behavior of
the high-energy KS states. The dimensionality can concisely
identify the localization and delocalization of states for both a
simple metal and an ionic compound.

B. Crystal symmetry effects on localization

The derivation of the dimensionality parameter was
considered generally for any Bloch state. Therefore, the di-
mensionality theoretically can be applied to any type of

FIG. 7. Dimensionality (red solid line) and density of states
(black dotted line) for Mg4+ in a 2 atom hcp primitive cell and a
54 atom supercell, comparing the effects of crystal symmetry on spa-
tial localization. Crystal symmetry results in an apparent localization
effect.

repeating unit cell used in a calculation, including primitive
unit cells and supercells. However, there is an interesting
localization effect that arises when considering cells with high
crystal symmetry, such as the perfect symmetry of primitive
cells. In these cases, the perfect crystal symmetry can result
in an enhancement in apparent localization, leading to states
that appear to be localized where other metrics—such as the
shape of the DOS—would otherwise suggest. For example,
the top figure in Fig. 7 plots the dimensionality and DOS
for Mg4+ ions in the hexagonal close-pack (hcp) primitive
cell of Mg. The DOS at the bottom of the continuum shows
a square-root dependence on the energy, which is typically
associated with free electrons and would therefore indicate de-
localization. However, the dimensionality of these states over
a broad region has D � 1, suggesting the states are instead
localized. Breaking the perfect crystal symmetry—such as by
considering a supercell with the ions shifted from their perfect
lattice positions—results in noticeably different localization
behavior. The bottom figure in Fig. 7 the dimensionality is
plotted for a 54 atom supercell of Mg4+. In this figure, the di-
mensionality and DOS is averaged over different ion positions
from the MD simulations. As well as being more realistic to
experimental measurements, sampling different ion positions
allows for only sampling the gamma point in the BZ, which
greatly reduces crystal symmetry effects on localization. The
atom numbers involved are still relatively small, resulting
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FIG. 8. DOS for Mg, Al, and MgF2 as the systems are isochorically heated. DOS are displaced vertically for clarity, and the energy has
been shifted by the Fermi energies of the materials. The charges indicate the charge state of the metal ions in the materials. The three arrows
show the location of the 3s (green line, arrow), 3p (blue line, square), and 3d (orange line, circle) orbitals for the metal ions. The presence of
these three peaks indicates that the n = 3 states have started localizing around the metal ions in each material, but does not show the localization
mechanism or how well localized these orbitals are.

in a DOS that is much less smooth than the primitive cell
case. However, the general features of the DOS between the
primitive cell and supercell calculations are the same. The
localization behavior at the bottom of the continuum has
changed dramatically when the crystal symmetry is broken,
tending toward delocalized states with dimensionalities D �
1, as expected. There is a small dip in the dimensionality
around ε = −5 eV with D < 1, which may indicate the su-
percell used is too small to entirely remove crystal symmetry
effects. However, as it is surrounded by delocalized states, it
would suggest this region is actually still delocalized.

Supercells still have crystal symmetry as they are still re-
peated infinitely via the periodic boundary conditions of the
simulation. However, the crystal symmetry is much weaker
as it is pushed out to greater distances due to the larger
lattice parameters and the random positions of the ions. One
would expect then that even larger supercells would further
dampen crystal symmetry effects on localization. However, as
the calculations performed in this work still require a substan-
tial number of bands, computational memory constrains the
number of atoms we can simulate.

C. Localization of states in hot-dense systems

As the Al, Mg, and MgF2 systems are isochorically heated
by the FEL, their L shell electrons start to thermally ionize,

and are stripped from the core of the ion, reducing the overall
nuclear screening. As a rule of thumb, the valence states
are able to re-localize around individual ions when the
strength of the ionized core overcomes the IPD. We now
proceed to study the localization of states as the temperature
is increased, and the L shells of F, Mg and Al are increasingly
ionized. For convenience we will only discuss integer L shell
ionizations and thus integer charge states (see Fig. 5 for how
this translates to temperature for each system), but in reality
the ionization is continuous with temperature.

Figure 8 shows the DOS of the supercell calculations of
Mg, Al, and MgF2 as the systems are heated. In all cases,
three peaks peel off from the continuum DOS; these are the
3s, 3p, and 3d orbitals of the metal ions in the materials,
as determined from the orbital-projected DOS. We note an
interesting order of the orbital recombination: the 3d orbital
has recombined without the 4s orbital being present on the
ion. It might be expected that the 4s orbital would recombine
first given that, for an atom, it is typically filled before 3d
orbital. The 3d orbital has also been seen to recombine before
the 4s orbital in FT-DFT calculations of Na [65]. There is
therefore a consistent recombination behavior for the third
period metals in which the 3d orbital recombines to the metal
ions without the 4s orbital being present on the ions. The 3p
and 3d orbitals appear to have merged together at the highest
charge states, as a consequence of their eigenvalues getting
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FIG. 9. The dimensionality (red solid line) and density of states (black dotted line) for hot Mg with a mean charge state between 4+
and 7+. The three peaks that develop correspond to the M shell. The dimensionality shows the state relocalization occurs while the M shell
recombines to the Mg sites.

close together. In metallic Mg, the three peaks form at a charge
state of 6+. Similarly, in Al the peaks are visible for a charge
state of 7+. As Mg and Al are both metals and neighbors in
the periodic table, it is not surprising they require the same
number of L shell holes for the M shell to recombine to the
metal ions. In MgF2, the M shell states also begin to form in
the DOS when the Mg ions are at the 6+ charge state. Though,
only the 3s and 3p orbitals are clearly forming—the peaks that
will form the 3d orbital remain largely merged with the rest of
the continuum. The M shell states are fully formed when the
Mg ions have a 7+ charge state. In all cases, the occupation
number of the M shell orbitals is small, with around or less
than one electron shared between all three orbitals on each
ion. Peaks forming in the DOS intuitively suggests that states
are localized to some extent, and the dimensionality parameter
allows us to examine this in more detail. In particular, it can
be used to identify how the M shell states relocalize to the
Mg ions.

The dimensionality and DOS for Mg with charge states
4+ to 7+ is illustrated in Fig. 9. For Mg4+, the states near
the continuum edge are in the process of relocalizing around
the Mg ions, with the dimensionality of the bottom of the

continuum being D < 3. At higher energies, the continuum
still has D = 3. In Mg5+, the bottom of the continuum at
energies ε < −2.9 eV has D < 0, indicating there are states
that have relocalized. An equivalent primitive cell calculation
had this region correspond to a peak which was a localized
quasi-3s orbital, with the majority angular momentum con-
tribution from l = 0, and additional contributions from other
angular momentum channels. Between ε = −2.9 and 5.7 eV,
D � 1, indicating there are localized states—the primitive
cell calculation reveals this to be a quasi-3p orbital. The
quasiorbitals are not distinguishable in the supercell calcu-
lations as the quasiorbitals are broad, and their eigenvalues
strongly depend on the ion positions. Therefore, due to sam-
pling over many shifted ions, the quasiorbitals blur together
and are indistinguishable from the continuum in the DOS of
the supercell calculation. In Mg6+, the n = 3 orbitals have
fully relocalized, and the three peaks have D < 1. In the IPD
picture, the highly ionized core has overcome the IPD and the
M shell has recombined to the Mg ions. At higher energies,
there is still a delocalized continuum with D ≈ 3.

The relocalization of the Al M shell is plotted in Fig. 10.
The relocalization behavior is very similar to Mg, requiring
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FIG. 10. The dimensionality (red solid line) and density of states (black dotted line) for hot Al with a mean charge state between 5+
and 8+. The three peaks that develop correspond to the M shell. The dimensionality shows the state relocalization occurs while the M shell
recombines to the Al sites.

the same number of L shell electrons to be ionized in order
for the M shell states to relocalize. We note a sharp jump in
the dimensionality at ε ≈ 15 eV in Al7+, indicating a strong
sensitivity of the continuum states on the lattice parameter
immediately as the M shell relocalizes.

We also examine the relocalization process in MgF2. The
density of Mg ions in MgF2 is lower (3.1 × 1022 cm−3)
than in Mg (4.3 × 1022 cm−3). For IPD models, a lower ion
density results in a lower IPD energy. However, the F ions
are easier to ionize than the Mg ions, so as Mg and MgF2
are thermally ionized, the free electron density in MgF2 will
be higher than in Mg at the same temperature. The F ions
act as donors to increase the electron density. Despite the
competing IPD effects from the electron and ion density, IPD
models predict that the IPD energy is greater in MgF2 than
in Mg. In general, it was found that IPD models are poor at
predicting CL in compounds [14]. MgF2 is therefore used to
compare the differences in relocalization between a simple
metal and an ionic compound, and the effects of additional
electron density from donor ions on the relocalization process
of thermal ionization. The relocalization of the Mg M shell

is plotted in Fig. 11. It is still a smooth process, and broad
M shell states relocalize around the Mg ions; however, there
are notable differences compared to Mg. First, the charge
state of the Mg ions required to fully relocalize the M shell
is higher in MgF2 than in Mg; 7+ versus 6+, respectively.
Additionally, the M shell states do not relocalize together at
the same charge state. Instead, the 3s and 3p orbital have
relocalized in Mg6+F2, but the 3d relocalizes at Mg7+F2.
The difference in the relocalization behavior of the M shell
compared to Mg is attributed to differences in the electron
density around the Mg ions in the two materials. Immediately
after the continuum level, there is a feature from ε = 15 eV
to 38 eV where the dimensionality is approximately constant
with 1 � D < 2. This feature is sensitive to the positions of
the ions, and consists of contributions from both the Mg and
F ions and many different angular momenta. Nonetheless,
on average, it appears to be delocalized like the rest of the
continuum. At higher energies, D ≈ 3 as expected.

There are some similar behaviours seen in a all three mate-
rials. First, the dimensionality indicates that states relocalize
at the bottom of the continuum before there are any clear
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FIG. 11. The dimensionality (red solid line) and density of states (black dotted line) for hot MgF2 for Mg charge states of 4+ to 7+. The
three peaks that develop correspond to the M shell of the Mg ions. An additional broad, structurally sensitive feature is also present just above
the continuum edge for charge states Mg7+F2 and above.

orbital features. Calculations using primitive cells of the mate-
rials indicates that these correspond to quasi-M shell orbitals.
However, as the widths and eigenvalues of the orbitals are
strongly dependent on the structure of the system, due to the
different electron densities surrounding the ions in different
positions, these orbitals merge and blur together. This would
indicate that despite the presence of localized states, they
would be indistinguishable from the continuum. When the
metal M shell states do become distinct, they are significantly
broader than the isoenergetic metal ion L shell states. For
example, the full width of the 3p orbital for Mg6+ and Mg7+
is ∼10 eV. Despite the relative broadness of the M shell states,
they are fully relocalized as they recombine to the ions. The
large width of 3p orbital is in agreement with the observation
of the very broad Kβ transitions seen in Fig. 2. While the
Kβ transitions are broader than the 3p orbitals, FT-DFT only
considers a mean static system, so it neglects other contribu-
tions such as configurational broadening. Numerous broad,
overlapping features contribute to the overall large width of
the Kβ transitions.

The continuum states have D > 1, showing that we still
have a delocalized continuum. There is a sharp increase
in the dimensionality at the bottom of the continuum once
the M shell states have relocalized. We note a similar fea-
ture is seen in MgF2 in Fig. 6, where states immediately
above the Fermi level (the zero energy in the plot) also show
large dimensionalities (D ≈ 4) that reduce to 2 � D � 3 as
the energy of the states increases. These states at the bottom
of the continuum are delocalized, but are not a free-electron
gas. The high dimensionality would suggest they are sensitive
to the structural conditions of the system, with separating
the ions resulting in an increased delocalization. At higher
energies the dimensionality settles to D = 3 as expected.

VI. IONIZATION POTENTIAL DEPRESSION

In the experiment presented in Ref. [14], the x-ray FEL
was used to irradiate Mg foils over a range of x-ray pho-
ton energies, selectively ionizing the K shell in increasingly
high ion charge states. Only when the driving photon energy
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FIG. 12. Lineouts for the emission intensity of the Kα lines of
Mg at different charge states, reproduced from Ciricosta (2016) [14].
The horizontal dashed blue lines indicates the K-edge energies in-
ferred in Ciricosta (2016). There is a ±5 eV uncertainty due to the
resolution of the measured FEL photon energy. The vertical black
dotted lines indicate the measured Mg Kβ lines from the peaks in
Fig. 2. The horizontal solid red lines indicate the K-edge energies
extracted using FT-DFT. For the 2+ to 4+ charge states, the Ciricosta
(2016) edges overlap with the FT-DFT edges.

exceeds an ionization threshold, or matches an excitation
energy, can a 1s core hole be created. These core-hole ions
radiatively recombine predominantly via the Kα emission
channel, providing a spectral signature of the charge states
excited during the irradiation process. As there are eight
electrons in an L shell, eight Kα lines can be observed. The
experimental emission intensity of these eight lines is plotted
against the driving FEL photon energy in Fig. 12, reproduced
from Ref. [14]. Clear edges are observed for the Kα lines,
indicating a threshold energy required to excite a 1s electron
from the K shell. In the absence of a bound M shell, these
thresholds represent the K-edges of the dense Mg system, and
these are marked on the figure with blue lines. The difference
in the measured ionization threshold in the solid-density sys-
tem and the ionization energy of isolated Mg atoms gives an
experimentally measured IPD energy.

We proceed to extract the IPD energy from our DFT
simulations, taking into account the dimensionality metric
described in the previous section, and compare these results
with the Ref. [14] experimental data shown in Fig. 12. Vinko
et al. [34] detailed two methods for extracting K-edge energies
from DFT calculations. One is to take directly the energy
difference between two DFT calculations, one with and one
without a K shell hole, while accounting for the additional
energy required to thermalize the ionized electron. The second

is to take the difference between the energy of the 1s orbital
and the continuum edge. Both methods produce similar re-
sults. For the work here we chose the second method, as it is
more convenient when treating hot systems where the thermal
energy in the valence electrons is considerable. It also makes
it easier directly to include the dimensionality measure in the
edge evaluation.

The continuum edge energy Ec is calculated in the ex-
tended system using a plane wave DFT calculation, as this
allows us appropriately to model the extended distribution
of free electrons. In IPD models, the continuum edge is the
boundary between an electron being bound or free. Following
this definition, Ec is placed at the separation between localized
and delocalized states. As previously noted, this separation
can lie in a continuous region of the supercell DOS. The DFT
calculations therefore suggest some localized states cannot
be easily be distinguished from the delocalized continuum.
The energy of the 1s orbital cannot be extracted directly
from the same calculation as a pseudopotential is needed to
represent the tightly bound 1s states in the plane wave DFT
approach. Instead, the 1s energy can be found relative to the
2p state by computing the Kα energy EKα

for the charge
state of interest using the atomic DFT code Atompaw from
which the frozen-core pseudopotential was constructed. This
energy can then be subtracted from the 2p orbital energy E2p

found in the plane wave DFT calculation to yield the binding
energy of the 1s state. The K-edge energy EK is therefore
computed as EK = Ec − (E2p − EKα

). We plot the results of
this calculation for the eight Mg Kα lines in Fig. 12 with the
red triangles. We see that for the first three charge states our
K-edge predictions match the thresholds observed in the data,
but start to differ for the highest five states. This is because
the DFT simulations predict a relocalization of the M shell
for Mg ions with more than four holes in the L shell. This
M shell relocalization process is depicted in Fig. 9 across
the relocalization region for charge states between 4+ and
7+. We note that if one takes Ec for Mg5+ as the bottom
of the continuous region of the DOS, the DFT simulations
agree well with the observed data. This further highlights the
difficulty in distinguishing the delocalized continuum from
close lying localized states, as well as demonstrating that the
continuum generally has a more complex localization behav-
ior beyond the free-electron gas. Strictly speaking, once the
M shell has relocalized we can no longer identify the charge
state of the ion using only the number of electrons in the
K and L shells as there may be bound M shell spectator
electrons. However, we choose to retain this Ne-core-based
nomenclature to keep a consistent notation, and also note that
the high temperatures and low binding energies of the M shell
mean that this will not substantially alter the energetics of the
system.

The observation of M shell states in highly charged ions
in the DFT simulations allows us to identify the 1s → 3p
excitation transitions in the experimental data of Fig. 12,
marked in black. These structures in x-ray absorption (and
subsequent Kα emission) are produced by an excitation into
an M shell state, rather than an ionization event into the
continuum. While these excitation peaks are prominent for
states 8+ and 9+, the process is far less obvious for states 6+
and 7+, neither of which display particularly notable features.
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FIG. 13. IPD levels for different charge states of Mg and Al,
inferred from various schemes: the FT-DFT calculations in this work
(red triangles), the EK model (black circles), the SP model (black
squares), and experimental data published in Ciricosta (2016) [14]
(blue diamonds).

The 5+ state presents no notable feature. In contrast, some
prominent peaks do not require us to reevaluate the position
of the K-edge. For example, the peak at 1525 eV observed
in state 8+ can be understood as a combination of (a) the
ionization of the 8+ ion and (b) a resonant Kβ excitation in
the 9+ ion, followed by a collisional recombination event
in the L shell before the K shell is filled via radiative Kα

emission in a now lower charge state 8+. Such ultrafast L
shell collisional dynamics within the duration of the 1s core
hole lifetime has been studied previously for both ionization
[37] and resonant Kα excitation [39], but not for resonant Kβ

excitation as seen here. Nevertheless, it is unsurprising that a
similar process should occur for resonant Kβ excitation once
the M shell relocalizes.

The IPD can be extracted from the DFT calculations by
taking the difference of the EK energy and the energy required
to ionize the 1s orbital in an isolated ion with the same
charge state. We plot these energies in Fig. 13, alongside the
experimental measurements of Ref. [14], and the predictions
from the analytical SP and EK models. As expected, there
is agreement between the results of this work and the IPD
values found by Ref. [14] for the first three charge states, but
beyond that the predictions diverge due to the emergence of

relocalizing states and a rebinding M shell. We note that the
IPD values agree with the EK model only for the first few
charge states, with the EK model overestimating the IPD at
high ionization. There is no systematic agreement with the
predictions of the SP model which generally underestimates
the IPD. Overall, an IPD energy between the EK and SP
models at high charge states is qualitatively consistent with the
results of other previous experiments [10,14,15,19] in similar
plasma conditions. There is also broad agreement between our
results and other theoretical studies [18,27–29], but it is worth
mentioning that the underlying assumptions are quite different
between models, and few explicitly treat the rebinding of M
shell states in the continuum.

Given the proximity of Al and Mg on the periodic table it
is unsurprising to note a similar trend in the predicted level of
IPD in Al. As in Mg, Al also shows the M shell relocalizing at
higher charge states, leading to a more complicated IPD trend
as a function of charge state. Again, the IPD values follow the
EK model well until the M shell rebinds, after which the IPDs
lie between the predictions of the SP and EK models. Previous
experimental work investigating the IPD in Al was only able
to extract the IPD for the first five charge states [10]. Our cal-
culations agree with these results for all but the highest charge
states. The difficulty in extracting experimental IPD values for
the highest charge states in Al is consistent with the predicted
complex IPD behavior from our calculations, which cannot
be reproduced by simple IPD models. This severely hinders
our ability to model experiments using time-dependent atomic
kinetics simulations, on which much of the experimental IPD
work is based.

We can also compare our IPD predictions with previ-
ous DFT-based results of Vinko et al. [34], which generally
showed good agreement with the predictions of the EK model.
The method described here is similar to Ref. [34] in many
ways, but differs in how the continuum is identified. Ref. [34]
assumed that the K-edge energy (and thus the IPD) could be
found by comparing two DFT simulations for various charge
states with and without a K shell core hole. The system
was always assumed to be charge-neutral, and any electron
removed from the K and L shells was placed in the continuum
and equilibrated. The energy difference calculated in this way
therefore always assumed that the valence states are part of the
continuum, and the K-edge is effectively defined as the lowest
possible energy that allows for the excitation of a 1s electron.
This method can successfully predict all the excitation thresh-
olds, but is only a reliable way to find the K-edge if no states
fully rebind in the continuum. The assumption of free valence
electrons was based on the observation of relatively broad M
shell features in the DOS, which are normally indicative of
unbound states. However, as we have seen in our IPR and
dimensionality analysis here, the behavior of the valence band
is complex and the shape of the DOS alone is not always a
reliable indicator of whether a state is bound or free. While
the distinction between an excitation threshold and a K-edge
is not critical for some plasma properties (eg. the energetics),
it does matter in the context of x-ray spectroscopy and IPD.
For such investigations the more detailed analysis presented
here is required.

Another important plasma effect that is included self-
consistently in the DFT calculations, but is typically excluded
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in atomic-kinetics and IPD calculations, are level shifts due
to the surrounding plasma particles, through so-called plasma
polarization shift (PPS) [71]. PPS arises due to the surround-
ing plasma particles perturbing the wave functions of an ion’s
orbitals, with the perturbation increasing with the principle
quantum number of an orbital [72]. Experimental evidence of
PPS for a number of elements and plasma densities [72–78]
indicates it red-shifts transition lines. In other words, the
binding energy of outer orbitals increases more relative to
inner orbitals. Atomic-kinetics codes generally rely on atomic
datasets in quantifying the binding energies of different levels.
An additional explanation for why the IPD models differ from
the DFT calculation is failing to account for changes in the
binding energy of orbitals by the surrounding plasma. As
this is occurring due to changes in the orbital wave function,
it is not inconceivable that an orbital may remain bound
if a perturbation were to keep it below the IPD-adjusted
continuum level. PPS should therefore be accounted for in
future collisional-radiative atomic-kinetics codes or in models
of IPD.

VII. SUMMARY

We have presented experimental observations of Kβ emis-
sion in highly ionized solid density Mg plasmas driven
by an intense x-ray FEL. Our results indicate that the M
shell rebinds in highly charged Mg ions. This result is
consistent with some popular IPD models, but contradicts
several others. While the IPD and the need to distinguish
between bound and free states in a dense plasma is an ar-
tificial construct from a physics standpoint, it is essential
to many plasma physics simulations, including collisional-
radiative modeling. As such, finding a robust method to
determine the IPD in dense plasmas without the need
for empirical parameters remains of considerable practical
interest.

To interpret the experimental results and place the model-
ing of the IPD on a firm footing we introduced a theoretical
model for the calculation of the IPD from first principles,
based on finite-temperature density functional theory. Within
this framework we describe a localization parameter, the di-
mensionality, that allows us reliably to evaluate whether a
valence state should be considered bound or free, based on its
spatial localization. We apply the model to x-ray isochorically
heated Al, Mg, and MgF2, and find that the n = 3 states
relocalize at high ionization in all three systems. The relo-
calization process is seen to be weaker in MgF2 than in Mg
owing to the change in environment around the Mg ions due
to the presence of additional delocalized electrons from the
F ions. This is consistent with experimental observations.
While our approach builds on the previous DFT work of
Vinko et al. [34], we show the importance of the dimensional-
ity metric in distinguishing between excitation and ionization
thresholds. While essential to compute a well-defined IPD
energy, the concept of boundness of a state is not trivial to

define for a dense plasma within the general framework of
Kohn-Sham DFT.

In comparing our predictions with simple analytical IPD
models, we find agreement with the EK model only for the
first four lower charges states in all three systems. For higher
charge states we observe considerable complexity in the relo-
calization of M shell states, a process which cannot in general
be reproduced by simple analytical models. In particular, for
these higher ionisation states the EK model overestimates the
IPD, while the SP model systematically underestimates it.
Based on this observation we have revisited the interpretation
of recent experimental results from Ciricosta et al. [14] and
have shown how observed spectral features in the measured
intensity of Kα emission as a function of x-ray photon energy
can be attributed to the resonant pumping of the Kβ transition
for the higher ionisation states.

Thus, as an overarching conclusion, we find that the origi-
nal experimental work performed at LCLS that identified the
EK model as providing a better description of the IPD than
the SP model in Al [10] is justified, given that particular
work provided IPD values for charge states only up to 7+.
However, the current observation of rebinding of the M shell
for higher ionisation states is also consistent with the work of
Hoarty et al. [15]. These findings further illustrate the inherent
difficulties in attempting to use simplified models of the IPD
in atomic kinetics calculations: as the authors of Ref. [10]
stated in their paper “The reasons underlying the success of the
EK over the SP model are far from clear: both the SP and the
EK models are simple, semi-classical models, ultimately both
unlikely to capture fully the complex physics of atomic systems
embedded within dense plasma environments over wide ranges
of plasma conditions and charge states.”

While the DFT-based model presented here provides new
insight into the mechanisms of continuum lowering, at present
the model remains too computationally cumbersome to be
implemented in-line in atomic kinetics suites or in plasma
opacity codes over multiple charge and atomic states. For this
use, simpler analytical models are still required. Nevertheless,
we trust that our approach, alongside the comparison with
available experimental data, can provide a valuable frame-
work to evaluate models for use across a wide range of plasma
temperatures, densities and ionizations.
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