253 research outputs found

    Comparison of Poisson and Bernoulli spatial cluster analyses of pediatric injuries in a fire district

    Get PDF
    Abstract Background With limited resources available, injury prevention efforts need to be targeted both geographically and to specific populations. As part of a pediatric injury prevention project, data was obtained on all pediatric medical and injury incidents in a fire district to evaluate geographical clustering of pediatric injuries. This will be the first step in attempting to prevent these injuries with specific interventions depending on locations and mechanisms. Results There were a total of 4803 incidents involving patients less than 15 years of age that the fire district responded to during 2001–2005 of which 1997 were categorized as injuries and 2806 as medical calls. The two cohorts (injured versus medical) differed in age distribution (7.7 ± 4.4 years versus 5.4 ± 4.8 years, p Conclusion Significant clustering occurs overall for all injury mechanisms combined and for each mechanism depending on the cluster detection method used. There was some overlap in geographic clusters identified by both methods. The Bernoulli method allows more focused cluster mapping and evaluation since it directly uses location data. Once clusters are found, interventions can be targeted to specific geographic locations, location types, ages of victims, and mechanisms of injury.</p

    Serious limitations of the QTL/Microarray approach for QTL gene discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL). However, the effectiveness of this approach has not been assessed.</p> <p>Results</p> <p>Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons<b/> between congenic and background strains. Three studies led to the identification of an underlying <it>QTL </it>gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD) regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of <it>QTL </it>regulated in <it>cis </it>(<it>cis </it>eQTL) showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP).</p> <p>Conclusions</p> <p>The literature shows limited successes from the QTL/microarray approach to identify <it>QTL </it>genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select <it>cis-</it>eQTL over <it>trans-</it>eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false <it>cis-</it>eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes that were not tested. Together, our results explain the tendency to report QTL candidates as differentially expressed and indicate that the utility of the QTL/microarray as currently implemented is limited. Alternatives are proposed that make use of microarray data from multiple experiments to overcome the outlined limitations.</p

    RANK/RANKL/OPG pathway: genetic associations with stress fracture period prevalence in elite athletes

    Get PDF
    Context: The RANK/RANKL/OPG signalling pathway is important in the regulation of bone turnover, with single nucleotide polymorphisms (SNPs) in genes within this pathway associated with bone phenotypic adaptations. Objective: To determine whether four SNPs associated with genes in the RANK/RANKL/OPG signalling pathway were associated with stress fracture injury in elite athletes. Design, Participants, and Methods: Radiologically confirmed stress fracture history was reported in 518 elite athletes, forming the Stress Fracture Elite Athlete (SFEA) cohort. Data were analysed for the whole group, and were sub-stratified into male and cases of multiple stress fracture group. Genotypes were determined using proprietary fluorescence-based competitive allele-specific PCR assays. Results: SNPs rs3018362 (RANK) and rs1021188 (RANKL) were associated with stress fracture injury (p<0.05). 8.1% of stress fracture group and 2.8% of the non-stress fracture group were homozygote for the rare allele of rs1021188. Allele frequency, heterozygotes and homozygotes for the rare allele of rs3018362 were associated with stress fracture period prevalence (p<0.05). Analysis of the male only group showed 8.2% of rs1021188 rare allele homozygotes to have suffered a stress fracture while 2.5% of the non-stress fracture group were homozygous. In cases of multiple stress fractures, homozygotes for the rare allele of rs1021188, and individuals possessing at least one copy of the rare allele of rs4355801 (OPG) were shown to be associated with stress fracture injury (p<0.05). Conclusions: The data support an association between SNPs in the RANK/RANKL/OPG signalling pathway and the development of stress fracture injury. The association of rs3018362 (RANK) and rs1021188 (RANKL) with stress fracture injury susceptibility supports their role in the maintenance of bone health, and offers potential targets for therapeutic interventions

    Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury

    Get PDF
    Context: Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. Objective: To evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. Methods: In 210 Israeli Defence Forces (IDF) military conscripts, stress fracture injury was diagnosed (n=43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n=125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson Chi-square (χ2) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. Results: The variant allele of P2X7R SNP rs3751143 (Glu496Ala- loss of function) was associated with stress fracture injury, while the variant allele of rs1718119 (Ala348Thr- gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P<0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P<0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P<0.05). Conclusions: The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury

    Corrigendum: How Can We Define “Optimal Microbiota?”: A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture

    Get PDF
    In the original article, we regret that the following Funding statement was missing: This work was financially supported by the Japan Society for the Promotion of Science (JSPS) through JSPS Core-to-Core Program (Advanced Research Networks) entitled Establishment of international agricultural immunology research-core for a quantum improvement in food safety. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.</p

    Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training

    Get PDF
    Purpose: Few human studies have reported early structural adaptations of bone to weight-bearing exercise, which provide a greater contribution to improved bone strength than increased density. This prospective study examined site- and regional-specific adaptations of the tibia during arduous training in a cohort of male military (infantry) recruits to better understand how bone responds in vivo to mechanical loading. Methods: Tibial bone density and geometry were measured in 90 British Army male recruits (ages 21 + 3 y, height 1.78 ± 0.06 m, body mass 73.9 + 9.8 kg) in weeks 1 (Baseline) and 10 of initial military training. Scans were performed at the 4%, 14%, 38% and 66% sites, measured from the distal end plate, using pQCT (XCT2000L, Stratec Pforzheim, Germany). Customised software (BAMPack, L-3 ATI) was used to examine whole bone cross-section and regional sectors. T-tests determined significant differences between time points (P<0.05). Results: Bone density of trabecular and cortical compartments increased significantly at all measured sites. Bone geometry (cortical area and thickness) and bone strength (i, MMi and BSI) at the diaphyseal sites (38 and 66%) were also significantly higher in week 10. Regional changes in density and geometry were largely observed in the anterior, medial-anterior and anterior-posterior sectors. Calf muscle density and area (66% site) increased significantly at week 10 (P<0.01). Conclusions: In vivo mechanical loading improves bone strength of the human tibia by increased density and periosteal expansion, which varies by site and region of the bone. These changes may occur in response to the nature and distribution of forces originating from bending, torsional and shear stresses of military training. These improvements are observed early in training when the osteogenic stimulus is sufficient, which may be close to the fracture threshold in some individuals

    The effect of postexercise carbohydrate and protein ingestion on bone metabolism

    Get PDF
    Purpose To investigate the effect of feeding carbohydrate and protein (CHO+PRO), immediately or 2 h after an exhaustive run, on the bone turnover response in endurance runners. Methods 10 men (age 28±5 y, height 1.74±0.05 m, body mass 69.7±6.3 kg) performed treadmill running at 75%VO2max, until exhaustion, on three occasions. Blood was collected before and immediately, 1, 2, 3, 4 and 24 h post-exercise, for measurement of β-CTX, P1NP, PTH, PO4, ACa and Ca2+. This was a randomised, counterbalanced, placebo-controlled, single-blinded, cross-over study. The three trials were; i) placebo (PLA), PLA solution was ingested immediately and 2 h post-exercise, ii) immediate feeding (IF), CHO+PRO (1.5 g.kgBM-1 dextrose and 0.5 g.kgBM-1 whey) were ingested immediately post-exercise and PLA 2 h post-exercise, and iii) delayed feeding (DF), PLA was ingested immediately post-exercise and CHO+PRO solution 2 h post-exercise. Data were analysed using repeated measures ANOVA and post-hoc Tukey’s HSD. Results At 1 and 2 h post-exercise, β-CTX concentrations were lower in the IF trial than the DF and PLA trials (P≤0.001). At 3 h post-exercise, β-CTX concentrations were higher in the PLA trial than the IF (P≤0.001) and DF trials (P=0.026). At 4 h post-exercise, β-CTX concentrations were lower in the DF trial than the IF (P=0.003) and PLA trials (P≤0.001). At 4 h post-exercise, P1NP was higher in the IF trial than in DF (P=0.026) and PLA trials (P=0.001). At 3 h post-exercise, PTH was higher in the IF trial than the DF trial (P≤0.001). Conclusions Following exhaustive running, immediate ingestion of CHO+PRO may be beneficial, as it decreases bone resorption marker concentrations and increases bone formation marker concentrations; creating a more positive bone turnover balance

    Responsive Operations for Key Services (ROKS): A Modular, Low SWaP Quantum Communications Payload

    Get PDF
    Quantum key distribution (QKD) is a theoretically proven future-proof secure encryption method that inherits its security from fundamental physical principles. With a proof-of-concept QKD payload having flown on the Micius satellite since 2016, efforts have intensified globally. Craft Prospect, working with a number of UK organisations, has been focused on miniaturising the technologies that enable QKD so that they may be used in smaller platforms including nanosatellites. The significant reduction of size, and therefore the cost of launching quantum communication technologies either on a dedicated platform or hosted as part of a larger optical communications will improve potential access to quantum encryption on a relatively quick timescale. The Responsive Operations for Key Services (ROKS) mission seeks to be among the first to send a QKD payload on a CubeSat into low Earth orbit, demonstrating the capabilities of newly developed modular quantum technologies. The ROKS payload comprises a quantum source module that supplies photons randomly in any of four linear polarisation states fed from a quantum random number generator; an acquisition, pointing, and tracking system to fine-tune alignment of the quantum source beam with an optical ground station; an imager that will detect cloud cover autonomously; and an onboard computer that controls and monitors the other modules, which manages the payload and assures the overall performance and security of the system. Each of these modules have been developed with low Size, Weight and Power (SWaP) for CubeSats, but with interoperability in mind for other satellite form factors. We present each of the listed components, together with the initial test results from our test bench and the performance of our protoflight models prior to initial integration with the 6U CubeSat platform systems. The completed ROKS payload will be ready for flight at the end of 2022, with various modular components already being baselined for flight and integrated into third party communication missions

    Evidence of maternal QTL affecting growth and obesity in adult mice

    Get PDF
    Most quantitative trait loci (QTL) studies fail to account for the effect that the maternal genotype may have on an individual’s phenotypes, even though maternal effect QTL have been shown to account for considerable variation in growth and obesity traits in mouse models. Moreover, the fetal programming theory suggests that maternal effects influence an offspring’s adult fitness, although the genetic nature of fetal programming remains unclear. Within this context, our study focused on mapping genomic regions associated with maternal effect QTL by analyzing the phenotypes of chromosomes 2 and 7 subcongenic mice from genetically distinct dams. We analyzed 12 chromosome 2 subcongenic strains that spanned from 70 to 180 Mb with CAST/EiJ donor regions on the background of C57BL/6 J, and 14 chromosome 7 subcongenic strains that spanned from 81 to 111 Mb with BALB/cByJ donor regions on C57BL/6ByJ background. Maternal QTL analyses were performed on the basis of overlapping donor regions between subcongenic strains. We identified several highly significant (P < 5 × 10−4) maternal QTL influencing total body weight, organ weight, and fat pad weights in both sets of subcongenics. These QTL accounted for 1.9-11.7% of the phenotypic variance for growth and obesity and greatly narrowed the genomic regions associated with the maternal genetic effects. These maternal effect QTL controlled phenotypic traits in adult mice, suggesting that maternal influences at early stages of development may permanently affect offspring performance. Identification of maternal effects in our survey of two sets of subcongenic strains, representing approximately 5% of the mouse genome, supports the hypothesis that maternal effects represent significant sources of genetic variation that are largely ignored in genetic studies
    corecore