687 research outputs found

    Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets

    Full text link
    Extrasolar planets found with radial velocity surveys have masses ranging from several Earth to several Jupiter masses. While mass accretion onto protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a global depletion of gas, such a mechanism is unlikely to have stalled the growth of some known planetary systems which contain relatively low-mass and close-in planets along with more massive and longer period companions. Here, we suggest a potential solution for this conundrum. In general, supersonic infall of surrounding gas onto a protoplanet is only possible interior to both of its Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche radii are equal to the disk thickness. Above this mass, the protoplanets' tidal perturbation induces the formation of a gap. Although the disk gas may continue to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe is quenched. Using two different schemes, we present the results of numerical simulations and analysis to show that the accretion rate increases rapidly with the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk thickness. In regions with low geometric aspect ratios, gas accretion is quenched with relatively low protoplanetary masses. This effect is important for determining the gas-giant planets' mass function, the distribution of their masses within multiple planet systems around solar type stars, and for suppressing the emergence of gas-giants around low mass stars

    Tidal evolution of close-in giant planets : Evidence of Type II migration?

    Full text link
    It is well accepted that 'hot Jupiters' did not form in situ, as the temperature in the protoplanetary disc at the radius at which they now orbit would have been too high for planet formation to have occurred. These planets, instead, form at larger radii and then move into the region in which they now orbit. The exact process that leads to the formation of these close-in planets is, however, unclear and it seems that there may be more than one mechanism that can produce these short-period systems. Dynamical interactions in multiple-planet systems can scatter planets into highly eccentric orbits which, if the pericentre is sufficiently close to the parent star, can be tidally circularised by tidal interactions between the planet and star. Furthermore, systems with distant planetary or stellar companions can undergo Kozai cycles which can result in a planet orbiting very close to its parent star. However, the most developed model for the origin of short period planets is one in which the planet exchanges angular momentum with the surrounding protoplanetary disc and spirals in towards the central star. In the case of 'hot Jupiters', the planet is expected to open a gap in the disc and migrate through Type II .migration. If this is the dominant mechanism for producing `hot Jupiters' then we would expect the currect properties of observed close-in giant planets to be consistent with an initial population resulting from Type II migration followed by evolution due to tidal interactions with the central star. We consider initial distributions that are consistent with Type II migration and find that after tidal evolution, the final distributions can be consistent with that observed. Our results suggest that a modest initial pile-up at a ~ 0.05 au is required and that the initial eccentricity distribution must peak at e \sim 0.Comment: 10 pages, 15 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    BIMP‐Catalyzed 1,3‐Prototropic Shift for the Highly Enantioselective Synthesis of Conjugated Cyclohexenones

    Get PDF
    A bifunctional iminophosphorane (BIMP)‐catalysed enantioselective synthesis of α,β‐unsaturated cyclohexenones through a facially selective 1,3‐prototropic shift of β,γ‐unsaturated prochiral isomers, under mild reaction conditions and in short reaction times, on a range of structurally diverse substrates, is reported. α,β‐Unsaturated cyclohexenone products primed for downstream derivatisation were obtained in high yields (up to 99 %) and consistently high enantioselectivity (up to 99 % ee). Computational studies into the reaction mechanism and origins of enantioselectivity, including multivariate linear regression of TS energy, were carried out and the obtained data were found to be in good agreement with experimental findings

    An Automated Methodology for Non-targeted Compositional Analysis of Small Molecules in High Complexity Environmental Matrices Using Coupled Ultra Performance Liquid Chromatography Orbitrap Mass Spectrometry

    Get PDF
    The life-critical matrices of air and water are among the most complex chemical mixtures that are ever encountered. Ultrahigh-resolution mass spectrometers, such as the Orbitrap, provide unprecedented analytical capabilities to probe the molecular composition of such matrices, but the extraction of non-targeted chemical information is impractical to perform via manual data processing. Automated non-targeted tools rapidly extract the chemical information of all detected compounds within a sample dataset. However, these methods have not been exploited in the environmental sciences. Here, we provide an automated and (for the first time) rigorously tested methodology for the non-targeted compositional analysis of environmental matrices using coupled liquid chromatography-mass spectrometric data. First, the robustness and reproducibility was tested using authentic standards, evaluating performance as a function of concentration, ionization potential, and sample complexity. The method was then used for the compositional analysis of particulate matter and surface waters collected from worldwide locations. The method detected >9600 compounds in the individual environmental samples, arising from critical pollutant sources, including carcinogenic industrial chemicals, pesticides, and pharmaceuticals among others. This methodology offers considerable advances in the environmental sciences, providing a more complete assessment of sample compositions while significantly increasing throughput

    Two-Loop Correction to Bhabha Scattering

    Full text link
    We present the two-loop virtual QED corrections to e^+ e^- to mu^+ mu^- and Bhabha scattering in dimensional regularization. The results are expressed in terms of polylogarithms. The form of the infrared divergences agrees with previous expectations. These results are a crucial ingredient in the complete next-to-next-to-leading order QED corrections to these processes. A future application will be to reduce theoretical uncertainties associated with luminosity measurements at e^+ e^- colliders. The calculation also tests methods that may be applied to analogous QCD processes.Comment: Latex, 22 pages, 1 figur

    Do Synesthetes Have a General Advantage in Visual Search and Episodic Memory? A Case for Group Studies

    Get PDF
    BACKGROUND: Some studies, most of them case-reports, suggest that synesthetes have an advantage in visual search and episodic memory tasks. The goal of this study was to examine this hypothesis in a group study. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we tested thirteen grapheme-color synesthetes and we compared their performance on a visual search task and a memory test to an age-, handedness-, education-, and gender-matched control group. The results showed no significant group differences (all relevant ps>.50). For the visual search task effect sizes indicated a small advantage for synesthetes (Cohen's d between .19 and .32). No such advantage was found for episodic memory (Cohen's d<.05). CONCLUSIONS/SIGNIFICANCE: The results indicate that synesthesia per se does not seem to lead to a strong performance advantage. Rather, the superior performance of synesthetes observed in some case-report studies may be due to individual differences, to a selection bias or to a strategic use of synesthesia as a mnemonic. In order to establish universal effects of synesthesia on cognition single-case studies must be complemented by group studies

    State space modelling and data analysis exercises in LISA Pathfinder

    Full text link
    LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.Comment: Plenary talk presented at the 9th International LISA Symposium, 21-25 May 2012, Pari

    Micrometeoroid Events in LISA Pathfinder

    Get PDF
    The zodiacal dust complex, a population of dust and small particles that pervades the Solar System, provides important insight into the formation and dynamics of planets, comets, asteroids, and other bodies. Here we present a new set of data obtained using a novel technique: direct measurements of momentum transfer to a spacecraft from individual particle impacts. This technique is made possible by the extreme precision of the instruments flown on the LISA Pathfinder spacecraft, a technology demonstrator for a future space-based gravitational wave observatory that operated near the first Sun-Earth Lagrange point from early 2016 through Summer of 2017. Using a simple model of the impacts and knowledge of the control system, we show that it is possible to detect impacts and measure properties such as the transferred momentum (related to the particle's mass and velocity), direction of travel, and location of impact on the spacecraft. In this paper, we present the results of a systematic search for impacts during 4348 hours of Pathfinder data. We report a total of 54 candidates with momenta ranging from 0.2μNs\,\mu\textrm{Ns} to 230μNs\,\mu\textrm{Ns}. We furthermore make a comparison of these candidates with models of micrometeoroid populations in the inner solar system including those resulting from Jupiter-family comets, Oort-cloud comets, Hailey-type comets, and Asteroids. We find that our measured population is consistent with a population dominated by Jupiter-family comets with some evidence for a smaller contribution from Hailey-type comets. This is in agreement with consensus models of the zodiacal dust complex in the momentum range sampled by LISA Pathfinder.Comment: 22 pages, 14 figures, accepted in Ap
    corecore