176 research outputs found
A Note on the Supersymmetries of the Self-Dual Supermembrane
In this letter we discuss the supersymmetry issue of the self dual
supermembranes in (8+1) and (4+1)-dimensions. We find that all genuine
solutions of the (8+1)-dimensional supermembrane, based on the exceptional
group G_2, preserve one of the sixteen supersymmetries while all solutions in
(4+1)-dimensions preserve eight of them.Comment: Latex file, 12pages, no figure
Non-Collapsing Membrane Instantons in Higher Dimensions
We introduce a particular embedding of seven dimensional self-duality
membrane equations in C^3\times R which breaks G_2 invariance down to SU(3).
The world-volume membrane instantons define SU(3) special lagrangian
submanifolds of C^3. We discuss in detail solutions for spherical and toroidal
topologies assuming factorization of time. We show that the extra dimensions
manifest themselves in the solutions through the appearance of a non-zero
conserved charge which prevents the collapse of the membrane. We find
non-collapsing rotating membrane instantons which contract from infinite size
to a finite one and then they bounce to infinity in finite time. Their motion
is periodic. These generalized complex Nahm equations, in the axially symmetric
case, lead to extensions of the continuous Toda equation to complex space.Comment: 14 pages, 2 figure
Octonionic Selfduality for SuperMembranes
In this work we study the recently introduced octonionic duality for
membranes. Restricting the self - duality equations to seven space dimensions,
we provide various forms for them which exhibit the symmetries of the
octonionic and quaternionic structure. These forms may turn to be useful for
the question of the integrability of this system. Introducing a consistent
quadratic Poisson algebra of functions on the membrane we are able to factorize
the time dependence of the self - duality equations. We further give the
general linear embeddings of the three dimensional system into the seven
dimensional one using the invariance of the self-duality equations under the
exceptional group G_2.Comment: Latex file, 21 page
Population turnover in remote oceania shortly after initial settlement
Ancient DNA from Vanuatu and Tonga dating to about 2,900–2,600 years ago (before present, BP) has revealed that the “First Remote Oceanians” associated with the Lapita archaeological culture were directly descended from the population that, beginning around 5000 BP, spread Austronesian languages from Taiwan to the Philippines, western Melanesia, and eventually Remote Oceania. Thus, ancestors of the First Remote Oceanians must have passed by the Papuan-ancestry populations they encountered in New Guinea, the Bismarck Archipelago, and the Solomon Islands with minimal admixture [1]. However, all present-day populations in Near and Remote Oceania harbor >25% Papuan ancestry, implying that additional eastward migration must have occurred. We generated genome-wide data for 14 ancient individuals from Efate and Epi Islands in Vanuatu from 2900–150 BP, as well as 185 present-day individuals from 18 islands. We find that people of almost entirely Papuan ancestry arrived in Vanuatu by around 2300 BP, most likely reflecting migrations a few hundred years earlier at the end of the Lapita period, when there is also evidence of changes in skeletal morphology and cessation of long-distance trade between Near and Remote Oceania [2, 3]. Papuan ancestry was subsequently diluted through admixture but remains at least 80%–90% in most islands. Through a fine-grained analysis of ancestry profiles, we show that the Papuan ancestry in Vanuatu derives from the Bismarck Archipelago rather than the geographically closer Solomon Islands. However, the Papuan ancestry in Polynesia—the most remote Pacific islands—derives from different sources, documenting a third stream of migration from Near to Remote Oceania
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
Physical Processes in Star Formation
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
The polarized image of a synchrotron-emitting ring of gas orbiting a black hole
High Energy Astrophysic
Constraints on black-hole charges with the 2017 EHT observations of M87*
InstrumentationHigh Energy Astrophysic
- …