1,929 research outputs found

    Semi-classical Green kernel asymptotics for the Dirac operator

    Full text link
    We consider a semi-classical Dirac operator in arbitrary spatial dimensions with a smooth potential whose partial derivatives of any order are bounded by suitable constants. We prove that the distribution kernel of the inverse operator evaluated at two distinct points fulfilling a certain hypothesis can be represented as the product of an exponentially decaying factor involving an associated Agmon distance and some amplitude admitting a complete asymptotic expansion in powers of the semi-classical parameter. Moreover, we find an explicit formula for the leading term in that expansion.Comment: 46 page

    In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals

    Get PDF
    AbstractIn-plane wave propagation in layered phononic crystals composed of functionally graded interlayers arisen from the solid diffusion of homogeneous isotropic materials of the crystal is considered. Wave transmission and band-gaps due to the material gradation and incident wave-field are investigated. A classification of band-gaps in layered phononic crystals is proposed. The classification relies on the analysis of the eigenvalues of the transfer matrix for a unit-cell and the asymptotics derived for the transmission coefficient. Two kinds of band-gaps, where the transmission coefficient decays exponentially with the number of unit-cells are specified. The so-called low transmission pass-bands are introduced in order to identify frequency ranges, in which the transmission is sufficiently low for engineering applications, but it does not tend to zero exponentially as the number of unit-cells tends to infinity. A polyvalent analysis of the geometrical and physical parameters on band-gaps is presented

    Wildfire evidence from the Middle and Late Permian Hanxing Coalfield, North China Basin

    Get PDF
    Earth has a long geological history and palaeo-wildfire is one of the key factors which is responsible for the evolution and extinction of our earth systems. Thus, it is important to establish the history in order to gain more understanding about Permian-Triassic mass extinction. It is also related to the carbon cycle of the earth in which the whole life system depends. The objective of this paper is to evaluate the product of wildfire in terms of distribution and occurrences from the Late Permian North China basin. Hence, fourteen (14) rock samples were collected from a drill core of Hanxing Coalfield of North China basin. The samples were analyzed by macro and micro petrography, scanning electron microscopy (SEM), gas chromatography (GC), and gas chromatography-mass spectrometry (GC-MS) in order to study the evidence of wildfire. Charcoal (inertinite) particles are observed in the samples, which established the occurrences of wildfire during the Upper Middle and Late Permian time in North China. Additionally, high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) were detected in the studied samples which also reinforce the presence of palaeo - wildfire events in the North China basin in Late Permian due to the fact that the these aromatic compounds were formed under high temperatures

    Wildfire evidence from the Middle and Late Permian Hanxing Coalfield, North China Basin

    Get PDF
    Earth has a long geological history and palaeo-wildfire is one of the key factors which is responsible for the evolution and extinction of our earth systems. The most important extinction of our earth systems is the Permian-Triassic mass extinction. The objective of this paper is to evaluate the product of wildfire in terms of distribution and occurrences from the Late Permian North China basin. Fourteen rock samples were collected from a drill core of Hanxing Coalfield of North China basin. The samples were analyzed by macro and micro petrography, Scanning Electron Microscopy (SEM), Gas Chromatography (GC) and Gas Chromatography–Mass Spectrometry (GC-MS) in order to study the evidence of wildfire. Charcoal (inertinite) particles are observed in the samples, which established the occurrences of wildfire during the upper Middle and Late Permian time in North China. Additionally, high-molecular-weight Polycyclic Aromatic Hydrocarbons (PAHs) were detected in the studied samples which also reinforce the presence of palaeo–wildfire events in the North China basin in Late Permian due to the fact that these aromatic compounds were formed under high temperatures

    The Sigma 13 (10-14) twin in alpha-Al2O3: A model for a general grain boundary

    Full text link
    The atomistic structure and energetics of the Sigma 13 (10-14)[1-210] symmetrical tilt grain boundary in alpha-Al2O3 are studied by first-principles calculations based on the local-density-functional theory with a mixed-basis pseudopotential method. Three configurations, stable with respect to intergranular cleavage, are identified: one Al-terminated glide-mirror twin boundary, and two O-terminated twin boundaries, with glide-mirror and two-fold screw-rotation symmetries, respectively. Their relative energetics as a function of axial grain separation are described, and the local electronic structure and bonding are analysed. The Al-terminated variant is predicted to be the most stable one, confirming previous empirical calculations, but in contrast with high-resolution transmission electron microscopy observations on high-purity diffusion-bonded bicrystals, which resulted in an O-terminated structure. An explanation of this discrepancy is proposed, based on the different relative energetics of the internal interfaces with respect to the free surfaces

    Theory of a quodon gas. With application to precipitation kinetics in solids under irradiation

    Full text link
    Rate theory of the radiation-induced precipitation in solids is modified with account of non-equilibrium fluctuations driven by the gas of lattice solitons (a.k.a. quodons) produced by irradiation. According to quantitative estimations, a steady-state density of the quodon gas under sufficiently intense irradiation can be as high as the density of phonon gas. The quodon gas may be a powerful driver of the chemical reaction rates under irradiation, the strength of which exponentially increases with irradiation flux and may be comparable with strength of the phonon gas that exponentially increases with temperature. The modified rate theory is applied to modelling of copper precipitation in FeCu binary alloys under electron irradiation. In contrast to the classical rate theory, which disagrees strongly with experimental data on all precipitation parameters, the modified rate theory describes quite well both the evolution of precipitates and the matrix concentration of copper measured by different methodsComment: V. Dubinko, R. Shapovalov, Theory of a quodon gas. With application to precipitation kinetics in solids under irradiation. (Springer International Publishing, Switzerland, 2014

    Efficient convolutional hierarchical autoencoder for human motion prediction

    Get PDF
    © 2019, The Author(s). Human motion prediction is a challenging problem due to the complicated human body constraints and high-dimensional dynamics. Recent deep learning approaches adopt RNN, CNN or fully connected networks to learn the motion features which do not fully exploit the hierarchical structure of human anatomy. To address this problem, we propose a convolutional hierarchical autoencoder model for motion prediction with a novel encoder which incorporates 1D convolutional layers and hierarchical topology. The new network is more efficient compared to the existing deep learning models with respect to size and speed. We train the generic model on Human3.6M and CMU benchmark and conduct extensive experiments. The qualitative and quantitative results show that our model outperforms the state-of-the-art methods in both short-term prediction and long-term prediction

    Theory of bound polarons in oxide compounds

    Full text link
    We present a multilateral theoretical study of bound polarons in oxide compounds MgO and \alpha-Al_2O_3 (corundum). A continuum theory at arbitrary electron-phonon coupling is used for calculation of the energies of thermal dissociation, photoionization (optically induced release of an electron (hole) from the ground self-consistent state), as well as optical absorption to the non-relaxed excited states. Unlike the case of free strong-coupling polarons, where the ratio \kappa of the photoionization energy to the thermal dissociation energy was shown to be always equal to 3, here this ratio depends on the Froehlich coupling constant \alpha and the screened Coulomb interaction strength \beta. Reasonable variation of these two parameters has demonstrated that the magnitude of \kappa remains usually in the narrow interval from 1 to 2.5. This is in agreement with atomistic calculations and experimental data for hole O^- polarons bound to the cation vacancy in MgO. The thermal dissociation energy for the ground self-consistent state and the energy of the optically induced charge transfer process (hops of a hole between O^{2-} ions) have been calculated using the quantum-chemical method INDO. Results obtained within the two approaches for hole O−^- polarons bound by the cation vacancies (V^-) in MgO and by the Mg^{2+} impurity (V_{Mg}) in corundum are compared to experimental data and to each other. We discuss a surprising closeness of the results obtained on the basis of independent models and their agreement with experiment.Comment: 13 pages, 2 figures, 2 tables, E-mail addresses: [email protected], [email protected]
    • …
    corecore