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In-plane wave propagation in layered phononic crystals composed of functionally graded interlayers
arisen from the solid diffusion of homogeneous isotropic materials of the crystal is considered. Wave
transmission and band-gaps due to the material gradation and incident wave-field are investigated. A
classification of band-gaps in layered phononic crystals is proposed. The classification relies on the anal-
ysis of the eigenvalues of the transfer matrix for a unit-cell and the asymptotics derived for the transmis-
sion coefficient. Two kinds of band-gaps, where the transmission coefficient decays exponentially with
the number of unit-cells are specified. The so-called low transmission pass-bands are introduced in order
to identify frequency ranges, in which the transmission is sufficiently low for engineering applications,
but it does not tend to zero exponentially as the number of unit-cells tends to infinity. A polyvalent anal-
ysis of the geometrical and physical parameters on band-gaps is presented.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Functionally graded materials (FGMs) are advanced composites
consisting of two or more material phases, characterized by a grad-
ual variation in composition and structure in some spatial direc-
tions. The concept of FGMs was introduced in 1984 by a group of
material scientists in Japan (Woo and Meguid, 2001; Shen, 2009).
One of the superior properties of the FGMs compared to the classi-
cal composites is that the continuous gradation in material proper-
ties can overcome the interfacial problems typical for most layered
composite structures. Owing to their great advantages in a variety
of engineering applications, FGMs are essentially designed to take
advantages of desirable characteristics of each of the constituent
phases.

In recent years, there has been a great deal of works on the anal-
ysis of propagation of elastic waves in periodic composite struc-
tures or phononic crystals. Phononic crystals are functional
composite materials composed of periodic arrays of two or more
materials with different material properties and mass densities.
In general, the periodicity of phononic crystals may be in one-,
two-, or three dimensions with different scatterers, respectively.
By owning to the great advantages in a broad range of engineering
applications, the wave propagation phenomena in composite
materials and structures particularly play an important role in de-
sign of new devices in such engineering applications. Basically, the
most important properties of phononic crystals lie in the mechan-
ical or acoustical waves, which have specific frequency ranges in
which they cannot propagate within the periodic structures. Thus,
the frequency ranges that are forbidden for wave propagation are
usually called phononic band-gaps or stop-bands, and the occur-
rence of such band-gaps in periodic elastic structures is caused
by the multiple wave scattering at the interfaces between different
materials (Brillouin, 1946; Maldovan and Thomas, 2009).

The potential of the methods based on elastic waves for damage
detection was demonstrated last century (Viktorov, 1967; Achenbach,
1973; Alleyne and Cawley, 1992). Ultrasonic non-destructive
methods require precise and accurate wave excitation and signal
reception techniques, which can be realized in particular by the
introduction of special elements like phononic crystals with good fil-
tering properties into the actuators and sensors. An example is the
acoustic sensor system using resonances of two-dimensional (2D)
phononic crystals made up of a steel plate having two regular arrays
of holes and a cavity in-between (Zubtsov et al., 2012). Since
one-dimensional (1D) phononic crystals or multilayered periodic
laminates can be fabricated more easier than two-dimensional
(2D) and three-dimensional (3D) phononic crystals, they should be
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investigated in details due to their novel acoustic properties, which
have potential engineering applications (Saini et al., 2007). An
experimental investigation of phononic band-gaps for a normal
wave incidence in a 1D periodic SiO2/poly (methyl methacrylate)
multilayered film at gigahertz frequencies using Brillouin spectros-
copy was performed by Gomopoulos et al. (2010). Though many
works have been performed on phononic crystals, design of an
optimal phononic crystal remains a complex task and elastic wave
propagation in 1D phononic crystals is not fully understood yet.
The present study aims at developing efficient and accurate methods
for fast calculations of band-gaps, which can be applied in the opti-
mization procedure in order to design 1D FGM phononic crystals
with demanded properties, and for reliable investigations of the cor-
responding wave phenomena.

Many previous efforts have particularly been devoted to the
simulation and analysis of wave propagation and scattering prob-
lems in FG materials and structures (Liu et al., 1991; Sobczak and
Drenchev, 2013; Jha et al., 2013). Besides purely numerical meth-
ods, including finite difference time domain method (Berezovski
et al., 2003; Vollmann et al., 2006), finite element method (Chakr-
aborty and Gopalakrishnan, 2003; Santare et al., 2003) and hybrid
numerical methods (Liu et al., 1991; Han et al., 2001) that are more
suitable for finite FGM bodies, there are several semi-analytical ap-
proaches based on the solution of boundary-value problems in spa-
tial Fourier transform domains (Babeshko et al., 1987; Liu et al.,
1999). The semi-analytical approaches can be classified into two
groups for convenience. The first group involves explicit mathe-
matical models of FGMs such as the direct integration of differen-
tial equations with variable coefficients (Sato, 1959), including
modulating function method for Green’s matrix (Babeshko et al.,
1987) and Peano expansion method for matricants (Shuvalov
et al., 2005). The methods from the second group are based on
the approximation of an FG layer by a set of sub-layers in which
the displacement vectors have explicit expressions. For example,
approximations of continuous elastic moduli within the layer by
different functions (step-wise, exponential, linear or special
power-law) (Liu et al., 1999; Ke and Wang, 2006; Matsuda and
Glorieux, 2007; Ting, 2011) and the propagator technique (Gilbert,
1983; Kutsenko et al., 2013) have been used. The simplest layer
model (LM) was proposed by using step-wise approximation with
homogeneous elastic sub-layers.

Among the most popular methods for layered medium is the
transfer matrix method that dates back to the works of Thomson
(1950), Petrashen (1952) and Haskell (1953). The LM in conjunc-
tion with the T-matrix method seems to be more convenient for
numerical calculations of band-gaps in 1D multilayered FG pho-
nonic crystals because of fast implementation. However, the equiv-
alence of the LM and the explicit models of the FG layer is not so
evident since the explicit models presuppose the first derivatives
of the material properties in the governing equations which is ex-
cluded in the LM. For example, the replacement of FGMs by a set of
homogeneous sub-layers is poor for static problems of indentation
(Aizikovich et al., 2011). On the other hand, a comparative analysis
of Green’s matrixes and surface waves derived by both LM method
and the direct integration method with modulating functions have
been implemented for in-plane problem in Glushkov et al. (2012).
The study has shown that the LM with sufficient number of sub-
layers is suitable for the investigation of bulk and surface waves
in the layered media. Both of these two approaches have been used
also in Golub et al. (2012a), where the efficiency of the LM has been
proved in order to analyze SH wave propagation in FG phononic
crystals and a brief review on the methods applied to simulate
wave motion in layered composites is given. The approaches have
been applied to investigate time-harmonic elastic in-plane shear
waves propagating in periodically laminated composites with
functionally graded interlayers.
Functionally graded (FG) phononic crystals may have elastic
properties varying continuously through advanced fabrication
technologies such as sputtering, pressing, sintering etc. Besides, a
continuous elastic property may appear because of the diffusion
processes in the processing of dissimilar layers. Wu et al. (2009)
studied the propagation of elastic waves in 1D phononic crystals
with FGMs varying with a power-law function. They used the spec-
tral finite element and the transfer matrix methods as main tools
to analyze band-gaps and to investigate the effects of various
parameters on the wave band-gaps in FG inter-layers structures.
Two different power laws were used to describe the property var-
iation of the FG interlayers within the unit-cell, and in conjunction
with the transfer matrix method the wave reflection and transmis-
sion, band-gaps were investigated. More recently, Su et al. (2012)
studied the influences of the material parameters, material compo-
sition, and geometrical parameters on the band-gaps of 1D FG pho-
nonic crystals by using the plane-wave expansion method. Golub
et al. (2013) analyzed the wave propagation in FG treated by recur-
sion relations and effective boundary conditions.

In our previous work (Golub et al., 2012a), SH wave propagation
in layered FG elastic phononic crystals has been investigated. In
this paper we extend and further develop our methods for efficient
and accurate modeling of in-plane P- and SV-wave propagation in
FG periodic laminates by using the explicit FG and the multilayer
models. Effects of the geometrical and material parameters of the
FG phonic crystals on the wave transmission and band-gaps are
analyzed in details. The extension of the transfer matrix method
to the considered in-plane wave propagation problem is not
straightforward due to the numerically accumulating error arising
during matrix multiplications. In order to solve this problem a
semi-analytical representation for the transmission coefficient is
derived. The analysis of the asymptotics of the semi-analytical rep-
resentation shows different types of band-gaps and gives a criteria
for stop-band calculations using eigenvalues of the transfer matrix
for a unit-cell.
2. In-plane wave propagation in a layered periodic structure

2.1. Statement of the problem

The propagation of plane time-harmonic elastic P- and waves in
a periodically layered media or phononic crystal (PnCr) composed
of N identical elastic unit-cells between two identical elastic half-
planes is considered. The Cartesian coordinates ðx; zÞ are intro-
duced in such a way that the x-axis is parallel to the interfaces of
the phononic crystal and the origin of the coordinate system is
on the lower boundary of the structure (Fig. 1). Each of the N
unit-cells is composed of two isotropic elastic layers (A and B)
and two functionally graded (FG) interlayers between them so that
the elastic properties of the whole unit-cell are continuous
(Fig. 2(a)). The property variation in the local Cartesian coordinate
system of the kth unit-cell of thickness H parallel to the x-axis is
described by the following functions as shown in Fig. 2(c)

PðzÞ ¼

PA; z 2 ½0; hA�;

ðPB � PAÞ z�hA
hF

� �n
þ PA; z 2 ½hA; hA þ hF �;

PB; z 2 ½hA þ hF ;hA þ hF þ hB�;

ðPB � PAÞ H�z
hF

� �n
þ PA; z 2 ½hA þ hF þ hB;H�:

8>>>>>><
>>>>>>:

ð1Þ

Here the function PðzÞ denotes an appropriate material property
with PA and PB being the boundary values corresponding to the
mass density or the Lamé constants of the materials A and B (den-
sity qA;qB or Lamé constants kA; kB and lA;lB), hA and hB are the
thicknesses of the homogenous layers, hF is the thickness of the
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Fig. 1. The geometry of the problem.

(a) (b)

hA hB hFhF

A B

H

A B ABA B

(c)

n>1 

n<1 

PA

PB

hA hBhF Hh  +A h  +Fh  +A

Fig. 2. The unit-cell of the FG phononic crystal (a), its approximation as a multi-layered medium (b), and power law of the material property variation (c).
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FG interlayers, and H ¼ hA þ hB þ 2hF is the thickness of the unit-
cell. In this investigation, the exponent of the power law n ¼ 3 in
Eq. (1) is used. The PnCr is composed of N unit-cells which take
the regions ak�1 6 z 6 ak (k ¼ 1;2; . . . ;N) sequentially while the
PnCr occupies the total thickness 0 6 z 6 N � H. The used material
constants are given in Table 1 (Wu et al., 2009).

2.2. Governing equations and mathematical model

The governing time-harmonic elastodynamic equations with
respect to the displacement vector u ¼ fux;uzg ¼ fu1;u2g in an
elastic media with the mass density q are the following partial dif-
ferential equations

rij;j þ qx2ui ¼ 0; i; j ¼ 1;2; ð2Þ

where the stress tensor rij is expressed in terms of the displace-
ments ui and Lamé elastic constants k and l, which are functions
of z
Table 1
Elastic constants and mass density of the laminated composite.

Notation Materials Density (kg/m3)

A Alumina 4000
B Aluminium 2700
rij ¼ kuk;k dij þ lðui;j þ uj;iÞ:

Here the tensorial index notations are used for the summation and
derivative operators and dij is the Kronecker delta.The displace-
ments ui and the stresses rij are continuous on all the interfaces
of the layered structure, i.e.,

Du1jz¼zn
¼ 0; Du2jz¼zn

¼ 0;

Dr12jz¼zn
¼ 0; Dr22jz¼zn

¼ 0;
ð3Þ

where Df ðzÞjz¼a ¼ limh!0 ½f ðaþ hÞ � f ða� hÞ� denotes the jump of
the function f ðzÞ at the interface z ¼ a.

The displacements can be expressed in terms of the longitudinal
wave and the transverse wave potentials u and w as

u1 ¼ @u=@zþ @w=@x; u2 ¼ @u=@x� @w=@z:

The wave potentials in a homogeneous elastic medium satisfy the
following wave equations

Duþ ,2
Pu ¼ 0; Dwþ ,2

Sw ¼ 0: ð4Þ
Young’s modulus (GPa) Poisson’s ratio

400 0.231
70 0.33
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Here ,P ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=ðkþ 2lÞ

p
and ,S ¼ x

ffiffiffiffiffiffiffiffiffi
q=l

p
are the wavenumbers

of the longitudinal and the transverse waves.
Let us consider the motion of the layered periodic structure ex-

cited by time-harmonic plane waves incoming from the plane
z < 0 with the wavenumber a

uðx; z; tÞ ¼ uðzÞ expðiax� ixtÞ and
wðx; z; tÞ ¼ wðzÞ expðiax� ixtÞ;

where uðzÞ and wðzÞ are the complex amplitudes of the wave poten-
tials, and x is the circular frequency. Since uðzÞ and wðzÞ satisfy the
wave equations (4), the wave potentials can be expressed as

uðzÞ ¼ a1 expðiqLzÞ þ a3 expð�iqLzÞ;
wðzÞ ¼ a2 expðiqT zÞ þ a4 expð�iqT zÞ;

ð5Þ

qL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
,2

P � a2
q

; qT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
,2

S � a2
q

:

The coefficients ai in Eq. (5) depend on the number of the unit-
cells and the layer property in such a way to satisfy the continuity
conditions (3). On the other hand, the coefficients ai in (5) for the
upper (z > N � H) and the lower (z < 0) half-plane are determined
in a different way. In the lower half-plane we assume a1 ¼ dL and
a2 ¼ dT , while a3 and a4 are amplitudes of the plane waves reflected
by the phononic crystal structure. Correspondingly, in the upper
half-space a3 ¼ a4 ¼ 0 and a1; a2 are the wave transmission
coefficients.

For pure P- or SV-waves, the corresponding quantities should be
chosen as dL ¼ 1 and dT ¼ 0 or dL ¼ 0 and dT ¼ 1. For convenience,
let us consider a plane time-harmonic elastic wave incident at an
angle h to the z-axis and from z ¼ �1

uincðx; z; tÞ ¼ uincðzÞei,0 sin h x�ixt ; z 6 0; ð6Þ

where ,0 is the wavenumber of the incoming P-wave (,0 ¼ ,P;A) or
SV-wave (,0 ¼ ,S;A) in the lower half-plane of the material A, uincðzÞ
is the complex amplitude of the incident wave that can be ex-
pressed in terms of the wave potentials uincðzÞ ¼ expði,P;A cos hzÞ
or wincðzÞ ¼ expði,S;A cos hzÞ correspondingly. The time-dependent
factors are omitted below and only the complex amplitudes are
used for simplicity.

The wave-fields in all homogeneous isotropic sub-layers
zk�1 < z < zk are superpositions of plane P- and SV-waves with
the wavenumbers ,L k and ,T k. The angles of the refracted P- and
SV-waves hL k and hT k in the considered sub-layer satisfy the fol-
lowing Snell’s law (Grinchenko and Meleshko, 1981; Brekhovskikh
and Godin, 1998)

,L k sin hL k ¼ ,T k sin hT k ¼ ,0 sin h:

In general cases, hL k and hT k are complex-valued and multivalent
functions of the incidence angle h. The correct branches should be
chosen by using the principle of bounded energy absorption as

Re½qs k�P 0; Im½qs k�P 0; s ¼ L; T;

where qL k ¼ ,L k cos hL k and qT k ¼ ,T k cos hT k.

2.3. Transfer matrix of a homogeneous elastic sub-layer

The transfer matrix (T-matrix) method gives a simple expres-
sion describing elastic wave motion in a homogeneous elastic
sub-layer. The relation between the wave-fields on the two bound-
aries of the sub-layer can be expressed in terms of the T-matrix and
the generalized state vector v ¼ fu1; u2;r12;r22g. The generalized
state vector for the kth sub-layer has matrix representations that
can be obtained by substituting Eq. (5) into the expressions for
the displacement vector ui and the stress tensor rij in terms of
wave potentials as
vðzÞ ¼Mk Ekðz� zk�1Þa ¼ Tðz; zk�1Þvðzk�1Þ; z 2 ½zk�1; zk�: ð7Þ

The representation (7) depends on the generalized vector a describ-
ing the wave-field at the boundary zk�1 of the sub-layer. The vector
a ¼ fa1; a2; a3; a4g consists of the wave amplitude coefficients intro-
duced in a way similar to Eq. (5) that can be expressed via vðzÞ at
any fixed z. By fixing z ¼ zk�1 the T-matrix in Eq. (7) has the follow-
ing form

Tðz; zk�1Þ ¼Mk Ekðz� zk�1ÞM�1
k : ð8Þ

The T-matrix can be expressed explicitly in terms of the coordinate
z, the elastic constants, the frequency and the angle h of an incident
wave, see Aki and Richards (2002) and Chen and Wang (2007) for
more details.

In Eqs. (7) and (8), the matrix Mk is composed of four column-
vectors

Mk ¼ bþ1
..
.

bþ2
..
.

b�1
..
.

b�2

� �
; ð9Þ

b�1 ¼ i,Lk sinhLk;�i,Lk coshLk; �lk,
2
Lk sin2hLk; �lk,

2
T k cos2hT k

� �T
;

b�2 ¼ �i,T k coshT k;�i,T k sinhT k;�lk,
2
T k cos2hT k;�lk,

2
T k sin2hT k

� �T
:

The matrix EkðzÞ¼diagfexp½iqLk z�;exp½iqTk z�;exp½�iqLk z�;exp½�iqTk z�g
in Eqs. (7) and (8) is a diagonal matrix composed of the
exponentials.

2.4. Transfer-matrix method for phononic crystals with homogeneous
elastic layers and eigenvalues of the T-matrix

The wave transmission and reflection coefficients for a layered
phononic crystal structure are determined from the continuity
conditions of the stresses and displacements at the interfaces of
the sub-layers. The T-matrix method is used for this purpose (Aki
and Richards, 2002), where the total T-matrix for the whole lay-
ered periodic structure is composed of N T-matrices of the unit-
cells, i.e., T ¼ TN

c is a power function of the 4� 4 matrix Tc . If the
unit-cell consists of L sub-layers then the transfer matrix
Tc ¼ TL � TL�1 � . . . � T2 � T1 is a composition of the T-matrices for each
sub-layer. Using Jordan basis of the matrix Tc , the total T-matrix of
the phononic crystal can be expressed as

T ¼ G�1 KN G;

where G is a change-of-basis matrix to the Jordan normal form
K ¼ diagf1=k1;1=k2; k1; k2g of the matrix Tc .

The amplitude coefficients of the refracted and transmitted P-
and SV-waves in the half-planes of the considered layered periodic
structure are denoted by (rL; tL) and (rT ; tT ) accordingly. The dis-
placement vector in the half-planes

u ¼
uinc þ rLu�L 0 þ rT u�T 0; z 6 0;
tLuþL N þ tT uþT N; z P NH

	

is expressed by the displacement vectors u�L and u�T of plane P- and
SV-waves in the lower (�) and upper (+) half-planes. The continuity
conditions at the interfaces between the half-planes and the pho-
nonic crystal structure lead to the equation

h0 ¼M�1
� T�1 Mþh1; ð10Þ

where the vectors h0 ¼ fdL; dT ; rL; rTg and h1 ¼ ftL; tT ;0; 0g are com-
posed of the unknowns rL; rT and tL; tT , and M� and Mþ are the ma-
trixes defined by Eq. (9) for the lower and the upper half-plane,
respectively.

The coefficients tL and tT are determined from the first two
equations in the system (10), while the coefficients rL and rT are
explicitly expressed in terms of tL and tT . Collecting the powers
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of the eigenvalues in the solution, which are diagonal elements of
the matrix KN , leads to the series expansion

ftL; tTg ¼
X4

i¼1

mik
N
i =D;

D ¼
X3

i¼1

X4

j¼iþ1

Dijk
N
i kN

j :

ð11Þ

Here, the eigenvalues have the relations k3 ¼ 1=k1 and k4 ¼ 1=k2,
while the vectors mi ¼ fmiL;miTg and the coefficients Dij

(i; j ¼ 1;2;3;4) are expressed in terms of the matrices
kdijk ¼M�1

� G�1 and keijk ¼ GMþ as

mi ¼ ðd2idL � d1idTÞfei2 � ei1g;

Dij ¼
d1i d1j

d2i d2j










 � ei1 ei2

ej1 ej2










:

The reflection coefficients of the plane waves

frL; rTg ¼
X3

j¼1

X4

k¼jþ1

sjk kN
j kN

k =D

are expressed in terms of the components of the vector
sjk ¼ fs1jk; s2jkg, which is given by

sijk¼ðej1ek2�ej2ek1Þ ðdiþ2 j d2k�diþ2k d2jÞdL�ðdiþ2 j d1k�diþ2k d1jÞdT
� �

;

i¼1;2; j;k¼1;2;3;4:
2.5. Mathematical model for functionally graded phononic crystals

The T-matrix method can be exploited for the analysis of FG
phononic crystals in a similar manner to the procedure described
above. Let us consider the i-th unit-cell of the FG phononic crystal
occupying the region ai�1 6 z 6 ai; jxj <1 as shown in Figs. 1 and
2. It is composed of the homogeneous layers A and B of the thick-
nesses hA and hB and two FG interlayers (AB;BA) of the thickness hF .
Thus, the T-matrix for the unit-cell is given by

Tc ¼ TðzBA; zBÞTðzB; zABÞTðzAB; zAÞTðzA; z0Þ;

where z0 ¼ ai�1; zA ¼ z0 þ hA; zAB ¼ zA þ hF ; zB ¼ zAB þ hB and
zBA ¼ zB þ hF ¼ ai are the z-coordinates of the boundaries of the cor-
responding layers. Here, TðzA; z0Þ and TðzBA; zBÞ are the T-matrices of
the homogeneous elastic layers that have explicit expressions de-
rived from Eq. (8). The T-matrices for FG interlayers TðzAB; zAÞ and
TðzB; zABÞ have to be evaluated numerically except some particular
cases, e.g., exponential laws or special power laws (Han and Liu,
2002) for the material gradation.
0 20 40 60 80 100
0

1

2

3

ω
Η

/2
πc

A

M

(a)

Fig. 3. Band-gap convergence with increasing number M of the homogeneous sub-layers
h ¼ 40	 .
A simple layer model (LM) for the FG layer is used further. In the
LM, the T-matrix of the FG layer is approximated by the product of
the T-matrices for M homogeneous sub-layers (Fig. 1(b)) as

TðzAB; zAÞ �
Y1

i¼M

Tðzi; zi�1Þ; TðzBA; zBÞ �
Y1

i¼M

Tðz0i; z0i�1Þ;

z0 ¼ zA; zL ¼ zAB; zi ¼ z0 þ h ði� 1Þ; i ¼ 1;2; . . . ;M;

z00 ¼ zB; z0L ¼ z0BA; z0i ¼ z00 þ h ði� 1Þ; i ¼ 1;2; . . . ;M;

where h ¼ hF=ðM � 1Þ.
In the numerical calculations, normalized parameters are intro-

duced for convenience. The length parameter equal to the thick-
ness of the unit-cell H and the shear wave velocity cA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lA=qA

p
of material A are used for normalization. Accordingly, the normal-
ized frequency is defined by X ¼ xH=ð2pcAÞ.

Numerical studies have shown that with increasing number of
sub-layers, the relative error in the calculated band-gaps de-
creases. In particular, our numerical experiments have demon-
strated that M ¼ 200 sub-layers are more than enough to achieve
convergent results. An example of the convergence study of the
calculated band-gaps for incident P- and SV-waves is shown in
Fig. 3 for hA=hB ¼ 1; hF=H ¼ 0:5 and h ¼ 40	. The numerical results
are indistinguishable by eye if M > 60. Here, the colored and the
dashed domains in the sub-plots are band-gaps which will be dis-
cussed in the next section in details.

2.6. Classification of band structures

The most interesting phenomenon of phononic crystals is the
existence of band-gaps or stop-bands. Band-gaps are frequency
ranges, where the transmission of elastic waves or mechanical en-
ergy through the periodic structure is impossible. All other fre-
quency ranges, in which a non-zero wave transmission is
observed, are called pass-bands. In the present investigation, obli-
que wave incidence is also considered. Band-gaps valid for all inci-
dence angles are often denoted as full or complete band-gaps. It is
important to note here, that periodic structures with a finite num-
ber of unit-cells are considered here. Accordingly, the definition of
band-gaps here differs slightly from the band-gap definition for
infinite phononic crystals.

Band-gaps (BG) correspond to the frequencies of a full wave
blocking if N !1. The transmission coefficient decreases in the
band-gaps exponentially with the number of the unit-cells. An-
other situation does not fully correspond to band-gaps, but it is
also sufficiently different from pass-bands. These are frequency
ranges where the wave transmission is very low, but the
0 20 40 60 80 100
M

(b)

to approximate the FG sub-layers for incident P-wave (a) and S-wave (b) at an angle



(a)

(b)

Fig. 4. Dependence of the energy transmission coefficient jþ (top) and localization
factors cn ¼ logðknÞ (bottom) corresponding to BG-I (yellow zones) and LTPB (blue
zone) for h ¼ 20	; hF ¼ 0:18 and hA=hB ¼ 1. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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transmission coefficient does not tend to 0 at N !1. Such fre-
quency ranges are designated in this analysis as low transmission
pass-bands (LTPB), where the wave transmission is very low, but
however a full wave blocking does not exist. More details and dis-
cussions on LTPB are given in the following.

2.6.1. Wave energy transmission and reflection coefficients
The energy transmission coefficient jþ and the energy reflec-

tion coefficient j� are usually introduced in order to characterize
the energy flow transfer in the laminated composites (Glushkov
and Glushkova, 1997). The energy transmission coefficient jþ is
defined as the ratio of the time-averaged energy flow transmitted
through the composite to the energy of the incident waves (e.g.,
Golub et al., 2012b). According to the energy conservation law,
the energy balance equation jþ þ j� ¼ 1 should be satisfied,
which is used as a check during the simulation in order to validate
the correctness and the accuracy of the numerical results.

The energy transmission coefficient jþ is a convenient tool to ana-
lyze band-gaps and pass-bands of the multi-layered periodic compos-
ite structure under consideration. Frequency ranges wherein the
energy transmission coefficient jþ ! 0 exponentially at N !1 cor-
respond to band-gaps. Frequency ranges, wherein the transmission
coefficient has a non-zero value, represent the so-called pass-bands.
The numerically calculated energy transmission coefficient can be
used to identify whether the frequencies under consideration belong
to band-gaps or pass-bands. But the identification between full and
partial band-gaps demands extra calculations for different N.

2.6.2. Identification and classification of band-gaps using the
eigenvalues of the T-matrix

The eigenvalues of the T-matrix are used to classify the band
structure. For simplicity, the eigenvalues k1 and k2 of the transfer
matrix Tc are ordered in accordance with the inequality
jk2jP jk1jP 1. The analysis of the expression (11) for the trans-
mission coefficients at N !1 shows evidently that the pass-band
corresponds to jk2j ¼ jk1j ¼ 1. In other cases the asymptotics of the
transmission coefficients

ftL; tTg 
 m1k
�N
2 þm2k

�N
1

 �
= D12 þ D23k

�2N
1

 �
; at N !1

reveals three different situations for the band structure when
jjþj � 1, which are given in Table 2.

The first two rows in Table 2 show a fast exponential decay of jþ
at N !1 and they are denoted as band-gaps or stop-bands. Here,
the notation f ¼ OðuÞ at x! a is used to denote that f ðxÞ and uðxÞ
are infinitesimal functions of the same order, i.e.,
f 
 Au; 0 < jAj <1. In order to gain a deeper insight into the band
structure, the band-gaps are classified as band-gaps of 1. kind (BG-I)
and 2. kind (BG-II). It should be noted that the present definition of
band-gaps by using eigenvalues of the T-matrix is in agreement
with the concept of localization factors defined by the smallest po-
sitive Lyapunov exponent (Castanier and Pierre, 1995). For checking
the correctness of the present band-gap definition, a comparison
Table 2
Band structure classification.

Type of band Eigenvalues Additional

Band-gap of 1. kind (BG-I) jk2j > 1 & jk1j > 1 m2 – 0 & D

m2 ¼ 0 & D

Band-gap of 2. kind (BG-II) jk2j > 1 & jk1j ¼ 1 m2 ¼ 0

Low transmission pass-band (LTPB) jk2j > 1 & jk1j ¼ 1 0 < w < e <

w ¼ jm2=ðD

Pass-band (PB) jk2j > 1 & jk1j ¼ 1 w > e
or jk2j ¼ 1
with the results based on the localization factors given in Chen
and Wang (2007) has been made. A good agreement has been ob-
tained though different numerical procedures have been used. Un-
like the present investigation, no FG interlayers and no low
transmission pass-bands (LTPB) were considered in Chen and Wang
(2007). From the physical point of view, the localization factor c is
equal to the factor of the exponential decay of the wave field as e�cN .
Thus the localization factor is c ¼ c1 if m2 – 0 and c ¼ c2 if m2 ¼ 0
within the band-gabs (c1;2ðxÞ ¼ log jk1;2j), see Table 2. In contrast,
the wave amplitude has no exponential decay within the pass-
bands, so the localization factor is equal to zero, i.e., c ¼ 0.

Band-gaps of 1. kind are determined by the condition
jk2jP jk1j > 1, which depends on the geometrical and material
properties of the unit-cells and the wavenumber. An example of
BG-I is given in Fig. 4, where the band-gaps BG-I are marked by yel-
low rectangles. Fig. 4 shows the dependencies of the transmission
coefficient jþðxÞ and the localization factor cðxÞ and c1;2ðxÞ for an
incident P-wave at an angle h ¼ 20	 and for an FG phononic crystal
with hF ¼ 0:18; hA=hB ¼ 1 and N ¼ 200.

Band-gaps of 2. kind (BG-II) do not appear so frequently as BG-I
and are observed only in some special cases depending on the
properties of the unit-cells and the half-planes. For BG-II, the con-
dition m2 ¼ 0 is satisfied when

d22dL � d12dT ¼ 0 or e21 ¼ e22 ¼ 0:

The second equation is satisfied in some special cases only while the
first equation is more natural for the considered FG phononic crys-
tals. It leads to the conclusion that BG-II exist if
conditions Behavior of jþ at N !1 Localization factor c

12 – 0 jþ ¼ Oðjk1j�2NÞ log jk1j
12 – 0 jþ ¼ Oðjk2j�2NÞ log jk2j

jþ ¼ Oðjk2j�2NÞ log jk2j

1 jþ ¼ Oðjwj2Þ 0

12 þ D23k�2N
1 Þj

jþ ¼ Oð1Þ 0



(a)

(c) (d)

(e) (f)

(g) (h)

(b)

Fig. 5. Transition of BG-II for normally incident SV-wave with h ¼ 0	 (a,c,e,g) to LTPB for an incidence angle h ¼ 10�5 (b,d, f,h). Transmission coefficient jþ (a,b), localization
factor (c,d), eigenvalues (e, f) and amplitudes of the eigenvectors jmkj (g,h).
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(a) d22 ¼ 0 and incident P-wave (dL ¼ 1; dT ¼ 0),
(b) d12 ¼ 0 and incident SV-wave (dL ¼ 0; dT ¼ 1).

Numerical analysis shows that BG-II can appear only in the case
of normally incident waves (h ¼ 0	). Some examples of BG-II are
shown in Fig. 5(a), (c), (e) and (g), where they are marked by cyan
rectangles. Here, the geometry of the FG phononic crystal is deter-
mined by hF ¼ 0:1 and hA=hB ¼ 1, and a normally incident SV-wave
(a)

(c)

(e)

Fig. 6. Transmission coefficient jþ (a,b), localization factors cn ¼ log kn (c,d) and ampl
Incident P-wave at an angle h ¼ 20	 ; hF ¼ 0:18 (a,c,e) and incident SV-wave at an angle
with h ¼ 0	 is considered. The coefficient d12 is equal to zero within
the considered frequency ranges, where c2 > 0 and c1 ¼ 0 which
results in BG-II correspondingly.

If jk1;2j ¼ 1 then the transmission coefficients are non-zero and
oscillate with changing N. The situation is more complicated if
jk2j > 1; jk1j ¼ 1 and jm2j– 0. In this case the energy transmission
coefficient can be estimated from (11) as jþ ¼ Oðjwj2Þ with
w ¼ jm2=ðD12 þ D23k

�2N
1 Þj and the corresponding frequencies
(f)

(d)

(b)

itudes of the eigenvectors jmnj (e, f) for usual LTPB (a,c,e) and point LTPB (b,d,f).
h ¼ 40	 (b,d, f), for hF ¼ 0:02; hA=hB ¼ 1.



Fig. 7. Transmission coefficient, localization factors and amplitude of the eigen-
vector jm2j in dependence on the angle of incident SV-waves at frequency
xH=2pcA ¼ 0:35 demonstrating the transition of BG-II to LTPB.
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belong to pass-bands because of no exponential decay at N !1.
The asymptotic analysis of (11) does not reveal the behavior of
jþðNÞ, so a complete analysis of ftL; tTg has been performed. It
shows a rather stable decrease at N !1 when jwj < e < 1 as
shown in Fig. 6(a), (c) and (e). Here, the value e ¼ 0:3 has been
chosen so that jþ < 0:1 with N P 200. Of course, the width of LTBP
depends on the value of e, but LTPB shrinks slowly with decreasing
e, e.g. Fig. 5(a). According to our careful analysis, pass-bands can be
BG-I

Fig. 8. Influence of the relative thickness of FG interlayers hF=H on band-gaps for inci
hA=hB ¼ 1.
classified into two categories, namely, normal pass-bands and low
transmission pass-bands (LTPB), where the wave transmission in
the phononic crystal is quite low but not zero.

It should be noted that the LTPB occur at non-zero incidence an-
gles only and they arise usually from BG-II. The consideration of an
arbitrary incidence angle like in the present investigation demands
some comments and examples about the relation between the
solutions for normal incidence and oblique incidence. The transi-
tion of the BG-II (cyan ranges of left sub-plots) to the LTPB (blue
ranges of right sub-plots) is demonstrated in Fig. 5. Though there
is a jump in the localization factor from zero to a certain small
non-zero angle due to the special asymptotic behavior, the other
quantities of the solution (the energy transmission coefficient jþ,
the eigenvalues kk, and jmkj etc.) are smooth functions of h. An
example is given in Fig. 7 for the first BG-II, which is depicted in
Fig. 5(a) at xH=2pcA ¼ 0:35. It is clearly seen from Fig. 7 that for
small incidence angles (0 6 h < 10	) jm2j is a linear function of h
at frequencies within BG-II and LTPB. The energy transmission
coefficient has an asymptotic form of jþ ¼ OðA expð�2c2NÞ þ h2Þ
at N !1 and h! 0	 where A is a constant. Thus, the localization
factor c ¼ c2 at h ¼ 0	 corresponds to BG-II. Besides, Fig. 7 shows
the evolution of LTPB into PB with changing incidence angle. The
transmission coefficient is quite small for the considered incidence
angles where c2 > 0, and it reaches the value 1 only if c2 ¼ 0.

The occurrence of LTPB with the increasing number of unit-cells
is demonstrated in Fig. 6(a). The left column of the sub-plots is a
BG-II LTPB

dent P-waves at angles h ¼ 0	 (a), h ¼ 20	 (b), h ¼ 40	 (c) and h ¼ 80	 (d), and for



BG-I BG-II LTPB

Fig. 9. Influence of the relative thickness of FG interlayers hF=H on band-gaps for incident SV-waves at angles h ¼ 0	 (a), h ¼ 20	 (b), h ¼ 40	 (c) and h ¼ 80	 (d), and for
hA=hB ¼ 1.
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zoom of Fig. 4. Starting from N ¼ 160, the level of the transmission
coefficient is quite small, but not less than 10�6. It should be men-
tioned here that the LTPB are not band-gaps exactly specking, but
within such LTPB the wave transmission through the phononic
crystal is practically forbidden. A parametrical study shows some
special cases where point LTPB occur for certain incidence angles.
For instance, at h ¼ 40	 the LTPB degenerate into a point if
hf ¼ 0:02; hA=hB ¼ 1 and h ¼ 40	 as shown in Fig. 6(b).
3. Numerical results and discussions

The existence of band-gaps, their width and location are impor-
tant for engineering applications. They can be utilized for the de-
sign of novel acoustic devices such as wave filters, tools for
selective generation, muting etc. From the standpoint of operating
modes of such devices the appropriate parameters should be cho-
sen for wave excitation as carrier frequency, type and incidence an-
gle of incident waves as well as material properties. Both
geometrical and material parameters of phononic crystals strongly
influence the width and the location of band-gaps.

In this section the influences of the thicknesses of the homoge-
nous layers and FG interlayers in the unit-cell as well as the inci-
dent wave on band-gaps are analyzed. Band-gap diagrams are
used to show the variation of band-gaps with the variation of geo-
metrical and material parameters. Different types of band-gaps
and pass-bands are marked in different ways in Figs. 8–12. Graded
domains are band-gaps of 1. kind (BG-I), the gradually colored
domains with light hatching are band-gaps of 2. kind (BG-II), low
transmission pass-bands (LTPB) with a transmission coefficient
jþ < 0:1 are denoted by hatching only, and purely white domains
correspond to pass-bands.

The color intensity for BG-I and BG-II is given in accordance
with the localization factor c within the stop-band. The value of
the localization factor is shown by a corresponding color, and the
last column in each figure shows the localization factor in the
band-gaps. In some cases the width of the LTPB is very small and
therefore such ’’point’’ band-gaps are denoted by dashed lines.
3.1. Influence of the FG interlayers on band-gaps

Functionally graded interlayers may have significant influences
on the elastic wave propagation in layered periodic phononic
crystals. The dependence of the band structure on the relative
thickness of FG interlayers hF=H for incident P-waves at incidence
angles h ¼ 0	; h ¼ 20	; h ¼ 40	 and h ¼ 80	 is shown in Fig. 8 for
hA=hB ¼ 1. The band-gap diagrams for incident SV-waves at the
same incidence angles as in Fig. 8 are given in Fig. 9. Obviously,
hF ¼ 0 corresponds to the case of a phononic crystal composed of
homogenous elastic layers only. The band-gaps shift to higher
frequencies with increasing hF=H. Usually the width of the first
band-gap at low frequencies (see for example Fig. 8(a)) depends
weakly on hF , while the width of high-frequency band-gaps
changes more strongly with hF=H and it may shrink to zero in
certain cases.



(e) (f)

BG-I BG-II LTPB

Fig. 10. Influence of the thickness ratio of homogenous layers hA=hB (in logarithmic scale) on band-gaps in phononic crystals without FG interlayers (hF ¼ 0, first column) and
with FG interlayers (hF ¼ 0:25, second column) for incident P-waves at various incidence angles h ¼ 0	 (first row), h ¼ 20	 (second row) and h ¼ 80	 (third row).
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Some point band-gaps are observed in these figures. The term
‘‘point stop-band’’ is used here for the case of an infinitesimally
small width in the frequency domain for fixed parameters of the
phononic crystal. No transmission of the wave energy is possible
at the frequency belonging to the point BG-I, and it is observed
for normal wave incidence (h ¼ 0	), see continuous lines and points
of shrinking zone in Figs. 8(a) and 9(a). Point LTPB, in which the
transmission coefficient is jþ < 10�5, are shown in Fig. 9(c) by
dashed lines.

If the incidence angle deviates from zero, then BG-II change
over to LTPB as shown in Fig. 5. Therefore we can observe the
two different types of band-gaps in Fig. 8(b)–(d). Some BG-I exist
in consolidation with LTPB. These consolidation continuously
changes with the variation of the relative thickness of FG interlay-
ers and the incidence angle. Furthermore, some BG-I appear only in
FG phononic crystals, e.g., see BG-I in the range of 2 < x < 2:2 and
0:05 < hF < 0:2 in Fig. 8(b). However, these BG-I exist in a consol-
idation with the LTPB. Other BG-I appear in the diagrams without
contiguity to the LTPB, e.g., see BG-I in Fig. 8(b). Interestingly, the
eigenvalue k1 is the complex conjugate to k2 within these zones,
and the corresponding LTPB evolve from the point BG arising at
h ¼ 0	 as shown Fig. 8(a).

The corresponding band-gaps for incident SV-waves are
presented in Fig. 9. In contrast to incident P-waves, here the LTPB
disappear with increasing incidence angle. For example, the LTPB
become the point LTPB at an incidence angle h ¼ 40	 as shown in
Fig. 9(c) by dashed lines. With further increasing incidence angle,
the BG become wider, and the localization factor increases (see
Fig. 9(d)).

3.2. Influence of the homogeneous layers on band-gaps

In order to investigate the influence of the geometrical param-
eters of the phononic crystal, the thickness ratio K ¼ hA=hB of the



Fig. 11. Band-gap diagrams in dependence on the incidence angle of incident P- (first column) or SV-waves (second column) for hA=hB ¼ 1 and two thicknesses of FG
interlayers hF ¼ 0 (first row), hF ¼ 0:1H (second row).
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homogenous layers A and B of the unit-cells of the considered peri-
odic structure is introduced. Fig. 10 depicts band-gap dependence
on the ratio K in logarithmic scale. Here, incident P-waves at four
different incidence angles h ¼ 0	; 20	; 40	; 80	 are considered
for phononic crystals without FG interlayers (hF ¼ 0) and with FG
interlayers of a thickness hF ¼ 0:25H. When the angle of the inci-
dent P-wave increases the maximum of the localization factor in
the band-gaps decreases, but the LTPB widen on the contrary.

Fig. 10 shows that the band-gaps change within the range
10�1 < K < 10, where their form, width and position depend
strongly on K. The band-gaps draw up to the gradually tapering
zones and their localization factors tend to zero when K ! 0 or
K !1 since the corresponding phononic crystal becomes a homo-
geneous structure. Opposite to phononic crystals composed of
homogeneous layers only, the band-gaps in the FG phononic crys-
tals do not disappear at K ! 0 or K !1 since the structure in
these cases remains periodically heterogeneous. With increasing
thickness or volume fraction of the hard material A, the band-gaps
move to higher frequencies. When the fraction of the hard material
A is larger than that of the soft material B (K > 10), the band-gaps
are wider than in opposite case K < 10�1, see Fig. 10. The presence
of the soft material B, even at a low volume fraction with
hA ¼ 100hB, may significantly affect the band-gaps in the layered
phononic crystal without FG interlayers. This conclusion is well
known from early literature on elastic wave propagation (Achen-
bach, 1973; Auld, 1973).

3.3. Influence of the wave incidence on band-gaps

Next, the influences of the type and incidence angle of incident
elastic waves on the wave propagation in phononic crystals are ana-
lyzed. The changes of the band-gap diagrams from layered (hF ¼ 0)
to functionally graded (hF=H ¼ 0:1;0:25 and 0:5) phononic crystals
can be observed in Figs. 11 and 12. Even quite thin FG interlayers
with hF ¼ 0:1H result in different band-gaps and LTPB compared
with that for layered phononic crystals without FG interlayers, espe-
cially in the high-frequency range. Generally, the band-gaps do not
disappear as the incidence angle varies. The BG-I can disappear at
some incidence angles and change over to LTPB, so that the bands
with a small transmission coefficient 0 6 jþ < 0:1 are overall con-
tinuous. All LTPB starting from a small incidence angle h – 0	 evolve
from the corresponding BG-II for the normal incidence with h ¼ 0	.

By analyzing the BG-I carefully it can be noted that the band-
gaps in the diagrams of the first columns (incident P-wave) are
similar to that in the second columns (incident SV-wave) at
jhj < h�; h� � 36	, if the first are properly scaled, see domains be-
fore the dashed vertical lines in Figs. 11, 12(b) and (d). It becomes
obvious if we notice that all BG-I are invariant with respect to the



Fig. 12. Band-gap diagrams in dependence on the incidence angle of incident P- (first column) and SV-waves (second column) for FG phononic crystals with hF ¼ 0:25H (fist
row) and hF ¼ 0:5H (second row).
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quantity , sin h of the incident wave. So for any incidence angle hP

of the incident P-waves, there is a specific angle hS of the incident
SV-waves when their BG-I are identical. The relationship between
both incidence angles is governed by the following Snell’s law

,S sin hS ¼ ,P sin hP :

On the contrary, any BG-I for incident SV-waves with an incidence
angle of jhsj > h� where h� ¼ arcsinð,P=,SÞ is also forbidden incident
P-waves. Besides, band-gaps for jhj > h� are more ‘‘robust’’ (in the
sense that the corresponding localization factors are larger) and
wider than that for small incidence angles, LTPB are not observed,
see second columns of Figs. 11 and 12.

4. Conclusions

In this paper, propagation and band-gaps of time-harmonic
plane elastic P- and SV-waves in periodically laminated composites
or 1D phononic crystals composed of homogeneous layers and FG
interlayers are analyzed. The FG interlayers are approximated by
using a simple multi-layer model, and the convergence of the
method is demonstrated. The present investigation is mainly fo-
cused on efficient and accurate methods for the calculation of
band-gaps in 1D FG phononic crystals, but the methods can be eas-
ily extended to 1D piezoelectric phononic crystals, which have
wide-range innovative applications (Gomopoulos et al., 2010;
Chen et al., 2013).
A modified classification of band-gaps in 1D phononic crystals
is proposed. The classification relies on the exact analysis of the
eigenvalues of the transfer matrix for a unit-cell and the asymptot-
ics of the transmission coefficient. In particular, two kinds of band-
gaps are specified as BG-I and BG-II. Within the band-gaps the
transmission coefficient decays exponentially with the number of
the unit-cells tending to infinity. The term ‘‘low transmission pass
band’’ (LTPB) is introduced in order to identify frequency ranges,
where the transmission coefficient is not exactly zero but suffi-
ciently small and negligible for practical engineering applications
of phononic crystals. BG-I diagrams bend and change continuously
with varying geometrical and material parameters as well as the
wave incidence angle, but for BG-II the same tendency is valid only
for normally incident waves (h ¼ 0	). When h increases from zero,
BG-II turn into LTPB.

Numerical results show that the width and the location of the
band-gaps are strongly dependent on the relative thickness of the
homogeneous layers, the thickness of the FG interlayers, the
material properties, and the type and incidence angle of incident
elastic waves. It is revealed that band-gaps shift to higher fre-
quencies and pass-bands widen with the increasing thickness of
FG interlayers. The transition of BG-II to LTPB for different param-
eters of phononic crystals are investigated in details. BG-II exist
only in the case of normally incident elastic waves, and they
change over into LTPB when the incidence angle is larger than
zero.
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