1,981 research outputs found

    Scattering by nonspherical systems

    Get PDF
    Scattering by nonspherical particles with size of order of wavelength - scattering by axisymmetric penetrable particles using approximate matching of boundary condition

    Quantum entropy of two-dimensional extreme charged dilaton black hole

    Full text link
    By using Hawking's treatment as well as Zaslavskii's treatment respectively and the brick wall model, two different values of classical entropy and quantum entropy of scalar fields in the two-dimensional extreme charged dilaton black hole backgrounds have been obtained. A new divergent term emerges in the quantum entropy under the extreme limit for Zaslavskii's treatment and its connection with the phase transition has been addressed.Comment: Latex version, to be published on Phys.Lett.

    Is it possible to formulate least action principle for dissipative systems?

    Full text link
    A longstanding open question in classical mechanics is to formulate the least action principle for dissipative systems. In this work, we give a general formulation of this principle by considering a whole conservative system including the damped moving body and its environment receiving the dissipated energy. This composite system has the conservative Hamiltonian H=K1+V1+H2H=K_1+V_1+H_2 where K1K_1 is the kinetic energy of the moving body, V1V_1 its potential energy and H2H_2 the energy of the environment. The Lagrangian can be derived by using the usual Legendre transformation L=2K1+2K2HL=2K_1+2K_2-H where K2K_2 is the total kinetic energy of the environment. An equivalent expression of this Lagrangian is L=K1V1EdL=K_1-V_1-E_d where EdE_d is the energy dissipated by the friction from the moving body into the environment from the beginning of the motion. The usual variation calculus of least action leads to the correct equation of the damped motion. We also show that this general formulation is a natural consequence of the virtual work principle.Comment: 11 pages, no figur

    Constraints on the Dark Energy from the holographic connection to the small l CMB Suppression

    Get PDF
    Using the recently obtained holographic cosmic duality, we reached a reasonable quantitative agreement between predictions of the Cosmic Microwave Background Radiation at small l and the WMAP observations, showing the power of the holographic idea. We also got constraints on the dark energy and its behaviour as a function of the redshift upon relating it to the small l CMB spectrum. For a redshift independent dark energy, our constraint is consistent with the supernova results, which again shows the correctness of the cosmic duality prescription. We have also extended our study to the redshift dependence of the dark energy.Comment: accepted for publication in Phys. Lett.

    Quasinormal Modes in three-dimensional time-dependent Anti-de Sitter spacetime

    Full text link
    The massless scalar wave propagation in the time-dependent BTZ black hole background has been studied. It is shown that in the quasi-normal ringing both the decay and oscillation time-scales are modified in the time-dependent background.Comment: 8 pages and 7 figure

    A Mini Axial and a Permanent Maglev Radial Heart Pump§

    Get PDF
    The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements

    Dirac Cosmology and the Acceleration of the Contemporary Universe

    Full text link
    A model is suggested to unify the Einstein GR and Dirac Cosmology. There is one adjusted parameter b2b_2 in our model. After adjusting the parameter b2b_2 in the model by using the supernova data, we have calculated the gravitational constant Gˉ\bar G and the physical quantities of a(t)a(t), q(t)q(t) and ρr(t)/ρb(t)\rho_r(t)/ \rho_b(t) by using the present day quantities as the initial conditions and found that the equation of state parameter wθw_{\theta} equals to -0.83, the ratio of the density of the addition creation ΩΛ=0.8\Omega_{\Lambda}=0.8 and the ratio of the density of the matter including multiplication creation, radiation and normal matter Ωm=0.2\Omega_m =0.2 at present. The results are self-consistent and in good agreement with present knowledge in cosmology. These results suggest that the addition creation and multiplication creation in Dirac cosmology play the role of the dark energy and dark matter.Comment: 13 pages, 8 figure

    Intervention effects of Ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of Neurotrophin-4 and N-Cadherin

    Get PDF
    Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression

    Spin Relaxation in Single Layer Graphene with Tunable Mobility

    Full text link
    Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune mobility between 2700 and 12000 cm2/Vs, we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.Comment: 13 pages, 5 figure

    Quantitative analysis of powder mixtures by raman spectrometry : the influence of particle size and its correction

    Get PDF
    Particle size distribution and compactness have significant confounding effects on Raman signals of powder mixtures, which cannot be effectively modeled or corrected by traditional multivariate linear calibration methods such as partial least-squares (PLS), and therefore greatly deteriorate the predictive abilities of Raman calibration models for powder mixtures. The ability to obtain directly quantitative information from Raman signals of powder mixtures with varying particle size distribution and compactness is, therefore, of considerable interest In this study, an advanced quantitative Raman calibration model was developed to explicitly account for the confounding effects of particle size distribution and compactness on Raman signals of powder mixtures. Under the theoretical guidance of the proposed Raman calibration model, an advanced dual calibration strategy was adopted to separate the Raman contributions caused by the changes in mass fractions of the constituents in powder mixtures from those induced by the variations in the physical properties of samples, and hence achieve accurate quantitative determination for powder mixture samples. The proposed Raman calibration model was applied to the quantitative analysis of backscatter Raman measurements of a proof-of-concept model system of powder mixtures consisting of barium nitrate and potassium chromate. The average relative prediction error of prediction obtained by the proposed Raman calibration model was less than one-third of the corresponding value of the best performing PLS model for mass fractions of barium nitrate in powder mixtures with variations in particle size distribution, as well as compactness
    corecore