4,749 research outputs found

    Long-term solar activity influences on South American rivers

    Full text link
    River streamflows are excellent climatic indicators since they integrate precipitation over large areas. Here we follow up on our previous study of the influence of solar activity on the flow of the Parana River, in South America. We find that the unusual minimum of solar activity in recent years have a correlation on very low levels in the Parana's flow, and we report historical evidence of low water levels during the Little Ice Age. We also study data for the streamflow of three other rivers (Colorado, San Juan and Atuel), and snow levels in the Andes. We obtained that, after eliminating the secular trends and smoothing out the solar cycle, there is a strong positive correlation between the residuals of both the Sunspot Number and the streamflows, as we obtained for the Parana. Both results put together imply that higher solar activity corresponds to larger precipitation, both in summer and in wintertime, not only in the large basin of the Parana, but also in the Andean region north of the limit with Patagonia.Comment: Accepted to publication by Journal of Atmospheric and Solar-Terrestrial Physic

    Microbeam analysis of plasma effects in synthetic mica-like compound

    Get PDF

    Deep level investigation of InGaAs on InP layer

    Get PDF
    Deep level traps in lattice-matched In0.47Ga0.53As epitaxial layers grown by MBE on InP substrates have been studied by Deep Level Transient Spectroscopy (DLTS) on Al2O3/InGaAs Metal-Oxide-Semiconductor (MOS) capacitors. The impact of different surface passivation steps and a post-gate-deposition Forming Gas Annealing (FGA) has been studied. It is shown that spectra are dominated by a near mid gap electron trap in the depletion region, with activation energy in the range 0.37 eV to 0.42 eV. At the same time, a broad background distribution of interface states is found as well, which is significantly reduced by the FGA. Detailed carrier trapping studies have been carried out to identify the origin of the grown-in electron traps, which are shown to be of point defect behavior

    Empirical analysis of the solar contribution to global mean air surface temperature change

    Full text link
    The solar contribution to global mean air surface temperature change is analyzed by using an empirical bi-scale climate model characterized by both fast and slow characteristic time responses to solar forcing: τ1=0.4±0.1\tau_1 =0.4 \pm 0.1 yr, and τ2=8±2\tau_2= 8 \pm 2 yr or τ2=12±3\tau_2=12 \pm 3 yr. Since 1980 the solar contribution to climate change is uncertain because of the severe uncertainty of the total solar irradiance satellite composites. The sun may have caused from a slight cooling, if PMOD TSI composite is used, to a significant warming (up to 65% of the total observed warming) if ACRIM, or other TSI composites are used. The model is calibrated only on the empirical 11-year solar cycle signature on the instrumental global surface temperature since 1980. The model reconstructs the major temperature patterns covering 400 years of solar induced temperature changes, as shown in recent paleoclimate global temperature records.Comment: 9 pages, 6 figure

    Anyonic quantum spin chains: Spin-1 generalizations and topological stability

    Full text link
    There are many interesting parallels between systems of interacting non-Abelian anyons and quantum magnetism, occuring in ordinary SU(2) quantum magnets. Here we consider theories of so-called su(2)_k anyons, well-known deformations of SU(2), in which only the first k+1 angular momenta of SU(2) occur. In this manuscript, we discuss in particular anyonic generalizations of ordinary SU(2) spin chains with an emphasis on anyonic spin S=1 chains. We find that the overall phase diagrams for these anyonic spin-1 chains closely mirror the phase diagram of the ordinary bilinear-biquadratic spin-1 chain including anyonic generalizations of the Haldane phase, the AKLT construction, and supersymmetric quantum critical points. A novel feature of the anyonic spin-1 chains is an additional topological symmetry that protects the gapless phases. Distinctions further arise in the form of an even/odd effect in the deformation parameter k when considering su(2)_k anyonic theories with k>4, as well as for the special case of the su(2)_4 theory for which the spin-1 representation plays a special role. We also address anyonic generalizations of spin-1/2 chains with a focus on the topological protection provided for their gapless ground states. Finally, we put our results into context of earlier generalizations of SU(2) quantum spin chains, in particular so-called (fused) Temperley-Lieb chains.Comment: 37 pages, many figure

    CURRENT DENSITY EFFECTS ON PLASMA EMISSION DURING PLASMA ELECTROLYTIC OXIDATION (PEO) ON AZ91D-MAGNESIUM ALLOY

    Get PDF
    The effect of bipolar pulse mode current ratio on plasma behavior was investigated in PEO on AZ91D Mg-Alloy. Two cases of current ratio including 1.20 and 0.88 were applied to the sample. Plasma emission behavior was studied using plasma images and plasma emission measured by photodetector and Intensified Charged-Couple Device (ICCD) camera. The current ratio of greater than 1 shows the continuous increase and then stabilization in emission intensity with a gradual increase in voltage throughout the PEO process. In contrast, the current ratio of less than 1, a sudden drop in plasma emission intensity with voltage was found after 786s. Therefore, PEO process can be divided into two regimes, arc regime and soft regime, before and after voltage drop respectively. Results of measured spectra show that a soft regime does not have atomic or ionic excitation during PEO process. It is demonstrated that the growth of porous layer during PEO can be controlled, which is benefit for the protective oxide coating of sample
    • …
    corecore