1,888 research outputs found

    A multi-agent based evolutionary algorithm in non-stationary environments

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn this paper, a multi-agent based evolutionary algorithm (MAEA) is introduced to solve dynamic optimization problems. The agents simulate living organism features and co-evolve to find optimum. All agents live in a lattice like environment, where each agent is fixed on a lattice point. In order to increase the energy, agents can compete with their neighbors and can also acquire knowledge based on statistic information. In order to maintain the diversity of the population, the random immigrants and adaptive primal dual mapping schemes are used. Simulation experiments on a set of dynamic benchmark problems show that MAEA can obtain a better performance in non-stationary environments in comparison with several peer genetic algorithms.This work was suported by the Key Program of National Natural Science Foundation of China under Grant No. 70431003, the Science Fund for Creative Research Group of the National Natural Science Foundation of China under Grant No. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09, and the Engineering and Physical Sciences Research Council of the United Kingdom under Grant No. EP/E060722/1

    Interactions between landscape changes and host communities can regulate echinococcus multilocularis transmission

    Get PDF
    An area close to the Qinghai-Tibet plateau region and subject to intensive deforestation contains a large focus of human alveolar echinococcosis while sporadic human cases occur in the Doubs region of eastern France. The current review analyses and compares epidemiological and ecological results obtained in both regions. Analysis of rodent species assemblages within quantified rural landscapes in central China and eastern France shows a significant association between host species for the pathogenic helminth Echinococcus multilocularis, with prevalences of human alveolar echinococcosis and with land area under shrubland or grassland. This suggests that at the regional scale landscape can affect human disease distribution through interaction with small mammal communities and their population dynamics. Lidicker's ROMPA hypothesis helps to explain this association and provides a novel explanation of how landscape changes may result in increased risk of a rodent-borne zoonotic disease

    Genes Underlying Positive Influence Of Prenatal Environmental Enrichment And Negative Influence Of Prenatal Earthquake Simulation And Corrective Influence Of Chinese Herbalmedicine On Rat Offspring: Irf7 And Ninj2

    Get PDF
    Background: Prenatal environmental enrichment (EE) has been proven to positively affect but prenatal stress negatively influence the physiological and psychological processes in animals, whose trans-generational genetic mechanism remains unclearly defined. We aimed to investigate and find out key genes underlying the positive-negative effects derived from prenatal interventions.Materials and Methods: Pregnant rats were randomized into EE group (EEG), earthquake simulation group (ESG), herbal group (HG) received herbal supplements in feed after earthquake simulation, and control group (CG).Results: Light Box Defecation Test (LBDT) showed EEG offspring presented less fecal pellets than CG offspring, ESG’s more than CG’s, and HG’s less than ESG (p’s<0.05). Open-field Test (OFT) score of EEG was higher than CG offspring, of ESG’s was lower than CG’s, and HG’s higher than ESG’s. Irf7 and Ninj were screened, which were up-regulated in EEG, down-regulated in ESG (FC<0.5), and were neutralized in HG. Prenatal EE could positively promote the nervous system development, prenatal earthquake simulation could retard the nervous system development and Chinese herbal remedy (JKSQW) which could correct the retardation.Conclusion: The negative-positive prenatal effect could contribute to altered gene expression of Irf7 and Ninj2 which also could play a key role in the improving function of JKSQWfor the kidneys.Keywords: Prenatal stress; Earthquake simulation; Light Box Defecation Test; Open-field Test; Irf7; Ninj

    Shotgun proteomics: Tools for analysis of marine particulate proteins

    Get PDF
    National Natural Science Foundation of China [40821063, 40376032, 40476053]; Ministry of Science and Technology [2008DF100440]; Program for New Century Excellent Talents in Xiamen UniversityThis study sought a high resolution and high-throughput method to identify and characterize proteins from marine particulate organic matter (POM) using proteomic approaches. The results showed that only a limited number of discrete protein spots were distinguished using two-dimensional electrophoresis (2-DE). Most protein spots were faint and small in 2-DE gels, with a heavy unresolved smeared staining background, indicating 2-DE was not a good high resolution method to separate particulate proteins for identification and characterization. The shotgun proteomic approach combining one-dimensional electrophoresis and capillary liquid chromatography-tandem mass spectrometry as well as the NCBI protein database search was successfully applied to identify and characterize particulate proteins. Using this approach, 737 proteins matching one or more peptides were detected in a POM sample collected from the 41 m water layer in the basin area of the western South China Sea. Of these, 184 were identified as high-confidence proteins matching two or more peptides, including photosynthetic proteins, transporters, molecular chaperones, and porins. In addition to these proteins with known functions, a significant number of novel proteins (accounting for similar to 30% of the proteins identified) were also detected. The identification of a large number of high-confidence proteins in the POM sample demonstrated that the shotgun proteomic approach is reliable and feasible for the study of particulate proteins and will provide a powerful tool to comprehensively investigate the nature and dynamics of POM in the ocean

    High-Throughput Top-Down Fabrication of Uniform Magnetic Particles

    Get PDF
    Ion Beam Aperture Array Lithography was applied to top-down fabrication of large dense (108–109 particles/cm2) arrays of uniform micron-scale particles at rates hundreds of times faster than electron beam lithography. In this process, a large array of helium ion beamlets is formed when a stencil mask containing an array of circular openings is illuminated by a broad beam of energetic (5–8 keV) ions, and is used to write arrays of specific repetitive patterns. A commercial 5-micrometer metal mesh was used as a stencil mask; the mesh size was adjusted by shrinking the stencil openings using conformal sputter-deposition of copper. Thermal evaporation from multiple sources was utilized to form magnetic particles of varied size and thickness, including alternating layers of gold and permalloy. Evaporation of permalloy layers in the presence of a magnetic field allowed creation of particles with uniform magnetic properties and pre-determined magnetization direction. The magnetic properties of the resulting particles were characterized by Vibrating Sample Magnetometry. Since the orientation of the particles on the substrate before release into suspension is known, the orientation-dependent magnetic properties of the particles could be determined

    Synergistic Activation of Cardiac Genes by Myocardin and Tbx5

    Get PDF
    Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF) and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF) and alpha myosin heavy chain (α-MHC), but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC). We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs). Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases
    corecore