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Abstract 

The performance of a new global Digital Image Correlation (DIC) approach known as 
Kriging DIC is assessed by comparison with the classical subset-based DIC through a 
standard evaluation procedure. This procedure employs synthetic images with 
imposed planar sinusoidal displacement fields of various spatial frequencies to 
quantify both the displacement measurement precision and the spatial resolution of 
DIC algorithms. The displacement precision and spatial resolution are re-defined in 
terms of two measures of discrepancy that have not been used before but are 
considered to give a better comparative assessment than was previously possible. The 
results are presented in graphical form to finally produce an evaluation of the relative 
performance of the different DIC approaches. These show that the Kriging DIC 
approach is robust to the measurement noise and has superior performance to the 
classical subset-based DIC in terms of both displacement measurement precision and 
spatial resolution. Furthermore, it is found that the best results are obtained when the 
discrepancy is measured in the normal direction, as opposed to the Y-direction for the 
quantification DIC performance. 

Keywords: Digital Image Correlation, Kriging Regression, Measurement Precision, 
Spatial Resolution 

 

1. Introduction  

Full-field measurement of displacement and strain has been made possible by modern 
digital camera technology and the development of algorithms in photogrammetry. The 
most popular approach is digital image correlation (DIC), based on maximising the 
correlation between reference and deformed grey-intensity images [1] obtained from a 
pattern of speckles applied on the surface of the test piece. DIC algorithms can be 
mainly classified into two categories [2]: local DIC algorithms known as subset-based 
DIC [3] and global DIC algorithms known as full-field DIC [4-8]. 

Subset DIC is generally based on square subsets of k×k pixels with shape functions 
applied to estimate a smooth displacement field across each subset. This generally 
leads to edge discontinuity, causing sensitivity to noise and can result in significant 
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measurement errors [9]. One way of overcoming this problem is to increase the size 
of the subset. In this way measurement precision may be increased, but this is 
necessarily accompanied by a deterioration in spatial resolution brought about by 
making the subset larger [10-13] – each subset has a single measurement point, 
generally at its centre. Full-field or global DIC is regarded as being more robust than 
subset DIC to image noise. However, its spatial resolution may also be degraded by 
the smoothing effect introduced by continuous constraints. 

The literature on measurement precision and spatial resolution is extensive. For 
example, some algorithms [14-16] are employed to generate synthetic images that 
mimic real patterns of displacement in both Fourier [17] and spatial domains [18]. 
Artificial displacements may be applied to a piece of experimental speckle image [19] 
for the same purpose. It is straightforward to quantify precision by evaluating the 
noise level of the measured displacement in terms of standard deviation [7, 8, 11]. 
However, the study of spatially fluctuating displacement fields [20, 21] usually 
requires the evaluation of the spatial resolution of DIC algorithms, which is very 
difficult to implement experimentally. Bornert et al. [11] produced synthetic speckle 
images with superimposed planar sinusoidal displacements. Different spatial 
frequencies were applied to enable the study of the spatial resolution effectively in 
terms of statistical properties. The same approach was followed by Wittevrongel et al. 
[8] to help re-define the spatial resolution of local and global DIC algorithm. It allows 
a fair comparison of the performance between different types of DIC algorithms, i.e. 
the subset DIC and a global DIC approach called p-DIC [8], by considering the 
combination of precision and spatial resolution at the same time. 

In this technology the classical definition of precision (also call displacement 
resolution) is the smallest change in the displacement field that can be readily 
measured and reflected in the measured displacement [7, 22]. The spatial resolution is 
said to be the smallest distance between two independent measurement points [7, 22]. 
The spatial resolution of subset-based DIC may be considered to be the subset size 
while the spatial resolution of global DIC depends on the number of measurements 
obtained within the region of interest (RoI). However, this classical definition is not 
applicable to global DIC since measurement points are correlated and the 
independence is not clearly defined. A practical definition of the spatial resolution 
was proposed by Sutton [23] as one half of the period of the highest frequency 
component that can be measured in the frequency band of the displacement data,  

Spatial resolution is now generally understood to mean the half-period of the spatial 
frequency (the half wavelength) at which the measurement precision exceeds some 
chosen threshold. In a purely numerical test a planar unidirectional sinusoidal 
displacement is applied to a rectangular strip of speckles. Gaussian white noise is 
applied to represent measurement errors. Grey-level reference and deformed images 
are defined and the DIC estimate is compared statistically (usually in terms of the 
mean error and standard deviation) to the true sinusoid. The half-period spatial 
resolution is the minimum required to reconstruct the sinusoid without aliasing using 
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the Fast Fourier Transform (FFT). This corresponds to the sampling rate, being twice 
the Nyquist frequency (i.e. the frequency of the sinusoid). 

Generally for both the local and global DIC algorithms, a compromise has to be made 
between measurement precision and spatial resolution. An ideal DIC algorithm is 
expected to be able to achieve an excellent precision and an excellent spatial 
resolution at the same time [7, 8]. Since the complexity of the sought displacement 
field is normally unknown before measurement, the optimal DIC algorithm for a 
specific application is not constant and relies on the trade-off between the detailed 
measurement of a displacement field and keeping the noise-induced error at a low 
level. In practice, a priori knowledge of the overall complexity of the displacement 
field can be quantified, for example, through finite element analysis [24]. In that case, 
the optimal DIC algorithm and parameters might be determined by performing 
simulated experiments [25]. 

Recently a new global DIC algorithm with integrated Kriging regression [26] was 
developed by the present authors. A Kriging regression model was integrated into the 
global DIC framework as a full-field shape function to formulate full-field 
displacement in a more accurate realisation of unknown true displacement fields. The 
lack of knowledge of the true displacement field was modelled by a Gaussian random 
process resulting in a Kriging model as a best linear unbiased prediction. A 
regularisation technique (in a global sense) was utilized to further improve the 
accuracy of Kriging model and to yield an approximation method to quantify control-
point displacement errors. Furthermore, an updating strategy for the self-adaptive 
control grid was developed on the basis of the Mean Squared Error (MSE) determined 
from the Kriging model. The proposed Kriging DIC approach showed excellent 
performance on displacement resolution and outperformed several other full-field 
DIC methods when using open-access experimental data. However, as discussed 
above, the performance of a DIC algorithm should be comprehensively validated 
through an examination of measurement precision and spatial resolution.  

Thus in this study, a comparison is made between Kriging DIC and the classical 
subset-based DIC in terms of measurement precision and spatial resolution. This is 
carried out by using a series of synthetic speckle images imposed with planar 
sinusoidal displacements with various spatial frequencies. Apart from the use of 
different DIC algorithms, other parameters and schemes, e.g. grey-intensity 
interpolation, are the same in the comparison. In the sequel, the Kriging DIC 
algorithm is briefly introduced, the methodology for the comparison is explained and 
new improved definitions of precision and spatial resolutions are given. Finally, 
results are produced that illustrate the good performance of the Kriging DIC algorithm.  
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2. Kriging DIC 

Kriging DIC [26] is a new global DIC algorithm with excellent robustness to image 
noise, good adaptation to displacement fields, and independent of user intervention. It 
is effective for a wide range of applications. A further validation of the performance 
of the method could lead to improvements in prospective applications and should be 
beneficial for further research. In the following, the details of Kriging DIC approach 
are very briefly introduced. 

It is well known that DIC is a full-field measurement technique which employs area-
match algorithms to determine underlying deformation between images [27]. The 
matching criterion is normally interpreted in the form of minimising the Sum of 
Squared Differences (SSD) [28] of grey intensities between two images. The SSD 
criterion may be written as, 

 ( )( ) ( )( )2
arg min ( , ), , , dg x u x z z v x z f x z

Θ
= + + − Θ∫SSD

C  (1) 

where Θ  denotes the RoI in the first image. The displacement ( )( )( , ), ,u x z v x z  may 

be understood as the optical flow of the speckle-pattern intensity from a reference 
image ( , )f x z  to its corresponding deformed image ( , )g x z  with ,x z coordinates in 

pixels. The whole RoI may be divided into a large number of small ‘subsets’ [7] 
(subset-based DIC) or be treated as a single large ‘subset’ (global DIC) to carry out 
the correlation. 

In order to find a solution for the DIC correlation criterion, the displacement field of a 
subset or RoI may be modelled using a shape function with finite unknown 
parameters to be determined. For both global and local DIC approaches, the 

displacement field ( )( , ), ( , )u x z v x z  can be approximated as a linear combination of 

chosen basis functions of unknown parameters [7, 26, 29] with finite dimension n , 
expressed as 
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where ( , ); 1, 2, ,j x z j nµ = …  are kernel functions and , ; 1, 2, ,
j ju vp p j n= …  are 

combination coefficients. The grey intensity image ( )( , ), ( , )g x u x z z v x z+ +  is an 

implicit function of ( )( , ), ( , )u x z v x z  and the spatial-domain Newton-Raphson 

iteration [30, 31] is usually applied to solve the minimisation problem.  
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As a global algorithm, Kriging DIC is implemented by applying a Kriging regression 

model as the global shape function to estimate the true displacement field ( , )w x z  as a 

Best Linear Unbiased Prediction (BLUP) [32], where { }( , ) ( , ), ( , )w x z u x z v x z∈  

represents the single-direction displacement field (i.e. either ( , )u x z  or ( , )v x z ). 

Specifically, ( , )w x z  is modelled as a realisation of a random function which 

combines a deterministic regression model and a zero-mean stochastic field [33]. 

Denoting [ ]T

0 1, , nw w=w ⋯  as displacements of a set of chosen control points 

( ), , 1,2, , ,j jx z j n= … , the displacement response ˆ( , )w x z  at an arbitrary untried 

location ( , )x z  can be formulated by the Kriging model in terms of a linear 

combination of the sample values 0w  [34, 26],  

 T
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1

ˆ ( , ) ( , )
n

j j
j

w x z x z w κ wκ
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= =∑   (3) 

where the Kriging weights are given by, 

( ) ( ) ( ) ( ) ( ) ( )( )1T 1 1 1
1 2, , , ,T T

nx z x z x z x zκ κ κ
−− − − = = − − 

 
κ R r C C R C C R r c⋯

    (4) 

The matrix C and vector c contain regression-function terms corresponding to the 

control points and the point of interest ( ),x z  respectively. In the present study the 

exponential (or Gaussian) kernel function, 

 ( ) ( )( )expjk x j k z j kr x x z zϑ ϑ= − − − −   (5) 

is used to define the correlation between control points, in matrix R, and between the 

point of interest ( ),x z  and each of the control points, in vector ( ),x zr . The Kriging 

weights are optimised by minimising the mean square (MSE) using the parameters xϑ , 

zϑ  and a regularisation parameter that accounts for measurement imprecision at the 

control points [26].  This formulation relies on an assumption that the displacement 
function is smooth and continuous (i.e. without irregularities or discontinuities). 

Apart from the application of the Kriging shape function, Kriging DIC also has 
several special features which are absent from classical DIC algorithms. Based on the 
discussion in [26], some general remarks may be made as follows:  

• Uncertainty in the Kriging DIC estimate is represented by a Gaussian random 
process with measurement errors incorporated into the correlation matrix. 

• A global optimisation process results in the most probable estimate (rather 
than the best fit) – it does so automatically without user intervention. 
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• Kriging DIC is capable of adapting to any irregular distribution of control 
points (as opposed to regular or uniform distributions) to better represent 
spatial variation in what is being measured. 

• The optimal number and distribution of control points can be achieved 
automatically through a self-adaptive updating process. 

 

3. Measurement precision and spatial resolution 

In this section a procedure is explained which is essentially similar that described by 
Bornert et al. [11] and Wittevrongel et al. [8]. However, whereas in [8] the threshold 
on measurement precision is based only on the difference in amplitude between the 
imposed sinusoid and the corresponding measurement, in the present work a more 
complete measure of the discrepancy is used. We begin with a general measure of 

discrepancy, denoted by the vector { } 1

n

i i
ε

=
 . Without being specific it represents in 

some way the difference between the imposed sinusoid and measurement at the 
control points, 1, ,i n= … , of the Kriging model. The statistics of error may then be 

defined in terms of the estimated mean and standard deviation (STD) as, 
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and the root mean squared error (RMSE) is given by, 

 2 21
i

n
RMS

nε εσ ε−= +   (8) 

The unidirectional planar sinusoid imposed in on the rectangular speckle pattern 
defines the true displacement as, 
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  (9) 

where A and p denote the amplitude and period.  

Examples of the imposed sinusoid and measured displacement are shown in Figure 1 
for subset-based and Kriging DIC. The sine wave has an amplitude 5 pixels, a period 
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of 75 pixels and zero-mean Gaussian noise is added with a standard deviation 3 grey 
values. The deformed speckle pattern [8, 11] is shown in Figure 2. The red dashed 
lines shown in Figure 1 are constructed normal to the measurement at the Kriging 

control points. This case illustrates one candidate measure of the discrepancy { } 1

n

i i
ε

=
 

given by the difference between the measurement and the intersection of the normal 
with the sinusoid. Another possibility would be to use the discrepancy measured only 
in the direction of the displacement (i.e. the Y-direction discrepancy), but in this case 
one would expect the discrepancy to be greater than that measured in the direction of 
the normal. The smaller the measure of discrepancy the better, and therefore normal 
measure is considered to be superior to the Y-direction measure. Of course, since the 
sinusoid is by definition a nonlinear function of x, it is necessary to iterate to 
determine the intersection precisely. 

The displacement measurement precision and spatial resolution were defined in 
general terms in the Introduction. In the results presented here the spatial resolution is 
understood to be one half of the lowest spatial period in pixels at which the DIC 

measurement is able to reproduce the true displacement to within a RMSε  of 5% or 

1.5% of the amplitude of the sinusoid. The precision is defined as the standard 

deviation εσ  (corresponding to the 5% or 1.5% discrepancy on RMSε ) measured in 

pixels in either the normal direction or the Y-direction. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 1 The normal discrepancy: (a) Subset DIC size 31×31, (b) Subset DIC size 
41×41, (c) Subset DIC with subset size 51×51, (d) Subset DIC with subset size 61×61, 

(e) 1st order Kriging DIC. 

 

 

Figure 2 Deformed speckle pattern with imposed sinusoidal displacement field having 
a period of 75 pixels. 

  

4. Performance of Kriging DIC algorithm  

In this section, performance of the Kriging-DIC algorithm, in terms of the 
displacement precision and spatial resolution, is assessed by means of a comparison 
with the classical subset-based DIC algorithm. A series of images with different 
sinusoidal deformation fields are used to calculate the displacement precision and 
spatial resolution of both the subset-based DIC and the Kriging DIC. The sinusoidal 
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displacement field cannot be perfectly reconstructed using polynomial shape 
functions and therefore provides a good test and a standard procedure for assessing 
the performance of DIC algorithms. In this study, the original displacement 
measurement is investigated, rather than strain which is a derived quantity obtained 
by post-processing.  

The reference images are defined by an experimental speckle pattern while the 
parameters of the deformed images with sinusoidal displacement fields are shown in 
Table 1.  A region of interest with uniformly distributed sample points (centres of 
subsets) is selected which contains several periods of the sinusoidal displacement. 
Both the subset-based DIC and Kriging DIC methods are applied to measure the 
displacements at the sample points and then calculate the Y-direction discrepancy and 
the normal discrepancy respectively. In both cases the displacement precision is 

quantified in terms of standard deviation εσ . The DIC algorithm parameters are given 

in Table 2 and the Normalized Sum of Squared Differences (NSSD) criterion was 
instead of the classical SSD for reasons of increased robustness [35].  

Figure 3 and 4 and Figure 5 and 6 show the root mean squared error (RMSE) and the 
standard deviation of the normal discrepancy and the Y-direction discrepancy 
respectively. As expected, the RMSE and the standard deviation both decrease as the 
period of the sinusoid increases. In Figures 3 and 5 the 5% and 1.5% errors are shown 
and it is seen that the Kriging models with 0th, 1st and 2nd order regression 
polynomials are able to accurately represent sinusoidal displacements with low 
periods (high spatial frequency). The spatial resolution of a particular DIC code is 
given by half the period corresponding to the intersection of the RSME curve with the 
horizontal 5% or 1.5% line.  

Figures 7 and 8 show the normal-direction measurement precision plotted against the 
spatial resolution for 5% and 1.5% errors. This result is particularly pleasing as it 
shows the Kriging DIC method to produce significantly better precision for the same 
spatial resolution as the 31×31 pixel subset DIC code. The equivalent Y-direction 
comparison is presented in Figures 9 and 10, where again the Kriging DIC approach 
produces improved results over the subset DIC code, but not such a great 
improvements as is apparent from Figures 7 and 8. The Y-direction measurement 
tends to overestimate the error, which is better estimated using the normal direction 
measure, and therefore the result shown in Figures 7 and 8 is considered to represent a 
better performance comparison than in Figures 9 and 10. It is clear also that 
increasing the order of regression in Kriging DIC enables a small improvement in 
spatial resolution to be achieved at considerable cost to measurement precision. 
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Table 1: Parameters of the sinusoidal deformed images 

Parameter value 

Amplitude 5 pixels 

Period 2525 200→  pixels 

Gaussian noise (standard deviation) 3 grey values 

 

 

Table 2: Parameters of DIC algorithms 

 Subset-based DIC Kriging DIC 

Criterion NSSD NSSD 

Sample (control) points 31×10 31×10 

Subset size 1031 61→  (pixels)  

Regression order  0, 1st and 2nd 

Kriging correlation 
function 

 Exponential 

Shape function 2nd-order  

Intensity interpolation 6×6 bi-cubic 6×6 bi-cubic 

 

 

Figure 3. The RMSE of the normal discrepancy in terms of the percentage (5% and 
1.5%) of the sinusoidal amplitude vs the period of sinusoidal deformation 
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Figure 4. The displacement precision (STD of normal discrepancy) vs the period of 
sinusoidal deformation  

 

 

Figure 5. The RMSE of the Y-direction discrepancy in terms of the percentage (5% 
and 1.5%) of the sinusoidal amplitude vs the period of sinusoidal deformation 
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Figure 6. The displacement precision (STD of Y-direction discrepancy) vs the period 
of sinusoidal deformation 

 

Figure 7 Displacement precision vs spatial resolution (one half of the periods) based 
on the normal-discrepancy RMSE under the criterion of 5% sinusoidal amplitude, for 
subset-based DIC using different subset sizes and Kriging DIC with different order 

regression functions  
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Figure 8 Displacement precision vs spatial resolution (one half of the periods) based 
on the normal-discrepancy RMSE under the criterion of 1.5% sinusoidal amplitude, 

for subset-based DIC using different subset sizes and Kriging DIC with different 
order regression functions  

 

Figure 9 Displacement precision vs spatial resolution based on the Y-direction RMSE 
under the criterion of 5% sinusoidal amplitude, for subset-based DIC and Kriging 

DIC 
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Figure 10 Displacement precision vs spatial resolution based on the Y-direction 
RMSE under the criterion of 1.5% sinusoidal amplitude, for subset-based DIC and 

Kriging DIC  

 

5. Conclusion 

The performance of the Kriging DIC algorithm in terms of measurement precision 
and spatial resolution is considered in this study. A comparison is made between 
Kriging DIC and the classical subset-based DIC on the basis of a series of speckle 
images with imposed sinusoidal deformation of various spatial frequencies. Two new 
measures of displacement discrepancy are used to redefine the measurement precision 
and spatial resolution for both local and global DIC. The difference between the true 
sinusoid and the measurement is determined most accurately when measured along 
the normal at the Kriging control points. This enables a better assessment to be made 
of the relative merits of different DIC algorithms. Results obtained using the RMSE 
criterion of 5% and 1.5% of the sinusoidal amplitude show Kriging DIC to be 
superior to classical sub-set based DIC in both displacement measurement precision 
and spatial resolution.  
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