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Abstract

The performance of a new global Digital Image Clatren (DIC) approach known as
Kriging DIC is assessed by comparison with thesstad subset-based DIC through a
standard evaluation procedure. This procedure egmpkynthetic images with
imposed planar sinusoidal displacement fields ofious spatial frequencies to
guantify both the displacement measurement preciamd the spatial resolution of
DIC algorithms. The displacement precision andiapatsolution are re-defined in
terms of two measures of discrepancy that have been used before but are
considered to give a better comparative assesdimamtvas previously possible. The
results are presented in graphical form to finplgduce an evaluation of the relative
performance of the different DIC approaches. Theisew that the Kriging DIC
approach is robust to the measurement noise anduperior performance to the
classical subset-based DIC in terms of both digplent measurement precision and
spatial resolution. Furthermore, it is found thet best results are obtained when the
discrepancy is measured in the normal directiompg®sed to the Y-direction for the
guantification DIC performance.

Keywords: Digital Image Correlation, Kriging Regression, Maeement Precision,
Spatial Resolution

1. Introduction

Full-field measurement of displacement and strais een made possible by modern
digital camera technology and the developmentgdrhms in photogrammetry. The
most popular approach is digital image correlaibitC), based on maximising the
correlation between reference and deformed greynsity images [1] obtained from a
pattern of speckles applied on the surface of ds¢ piece. DIC algorithms can be
mainly classified into two categories [2]: local@®&lgorithms known as subset-based
DIC [3] and global DIC algorithms known as fulliieDIC [4-8].

Subset DIC is generally based on square subsdtskopixels with shape functions
applied to estimate a smooth displacement fieldssceach subset. This generally
leads to edge discontinuity, causing sensitivityntdse and can result in significant
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measurement errors [9]. One way of overcoming pinidblem is to increase the size
of the subset. In this way measurement precisioy b® increased, but this is
necessarily accompanied by a deterioration in apadsolution brought about by
making the subset larger [10-13] — each subsetahasgle measurement point,
generally at its centre. Full-field or global DI€ regarded as being more robust than
subset DIC to image noise. However, its spatiabltg®®n may also be degraded by
the smoothing effect introduced by continuous a@msts.

The literature on measurement precision and spatisblution is extensive. For
example, some algorithms [14-16] are employed toegde synthetic images that
mimic real patterns of displacement in both Foufief] and spatial domains [18].
Atrtificial displacements may be applied to a pie€experimental speckle image [19]
for the same purpose. It is straightforward to difarprecision by evaluating the
noise level of the measured displacement in terfrtamdard deviation [7, 8, 11].
However, the study of spatially fluctuating disgeaeent fields [20, 21] usually
requires the evaluation of the spatial resolutibrD&C algorithms, which is very

difficult to implement experimentally. Bornert dt fl1] produced synthetic speckle
images with superimposed planar sinusoidal displecegs. Different spatial

frequencies were applied to enable the study ofspfaial resolution effectively in

terms of statistical properties. The same appreahfollowed by Wittevrongel et al.
[8] to help re-define the spatial resolution ofdband global DIC algorithm. It allows
a fair comparison of the performance between diffetypes of DIC algorithms, i.e.
the subset DIC and a global DIC approach calledi®-[8], by considering the

combination of precision and spatial resolutiothatsame time.

In this technology the classical definition of pséen (also call displacement
resolution) is the smallest change in the displaggnfield that can be readily
measured and reflected in the measured displacdie2iz]. The spatial resolution is
said to be the smallest distance between two inmdbp# measurement points [7, 22].
The spatial resolution of subset-based DIC maydresidered to be the subset size
while the spatial resolution of global DIC deperasthe number of measurements
obtained within the region of interest (Rol). Howevthis classical definition is not
applicable to global DIC since measurement pointe aorrelated and the
independence is not clearly defined. A practicdiniteon of the spatial resolution
was proposed by Sutton [23] as one half of theopgeof the highest frequency
component that can be measured in the frequenay dfathe displacement data,

Spatial resolution is now generally understood samthe half-period of the spatial
frequency (the half wavelength) at which the measient precision exceeds some
chosen threshold. In a purely numerical test a gslamnidirectional sinusoidal
displacement is applied to a rectangular strip pckles. Gaussian white noise is
applied to represent measurement errors. Grey-le¥etence and deformed images
are defined and the DIC estimate is compared statly (usually in terms of the
mean error and standard deviation) to the truessidu The half-period spatial
resolution is the minimum required to reconstrine sinusoid without aliasing using
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the Fast Fourier Transform (FFT). This correspdindhie sampling rate, being twice
the Nyquist frequency (i.e. the frequency of theusbid).

Generally for both the local and global DIC algnis, a compromise has to be made
between measurement precision and spatial resolufia ideal DIC algorithm is
expected to be able to achieve an excellent pogrisind an excellent spatial
resolution at the same time [7, 8]. Since the cempt of the sought displacement
field is normally unknown before measurement, tipginsal DIC algorithm for a
specific application is not constant and reliestloa trade-off between the detailed
measurement of a displacement field and keepinghthee-induced error at a low
level. In practice, a priori knowledge of the ovemmplexity of the displacement
field can be quantified, for example, through nglement analysis [24]. In that case,
the optimal DIC algorithm and parameters might letednined by performing
simulated experiments [25].

Recently a new global DIC algorithm with integratédging regression [26] was
developed by the present authors. A Kriging regoessiodel was integrated into the
global DIC framework as a full-field shape functidlw formulate full-field
displacement in a more accurate realisation of ankntrue displacement fields. The
lack of knowledge of the true displacement fieldswiaodelled by a Gaussian random
process resulting in a Kriging model as a bestalinanbiased prediction. A
regularisation technique (in a global sense) wakzed to further improve the
accuracy of Kriging model and to yield an approxiora method to quantify control-
point displacement errors. Furthermore, an updasimgtegy for the self-adaptive
control grid was developed on the basis of the Meguared Error (MSE) determined
from the Kriging model. The proposed Kriging DIC papach showed excellent
performance on displacement resolution and outpedd several other full-field
DIC methods when using open-access experimental. ddédwever, as discussed
above, the performance of a DIC algorithm shouldcbeprehensively validated
through an examination of measurement precisiorspatial resolution.

Thus in this study, a comparison is made betwedging DIC and the classical
subset-based DIC in terms of measurement precamohspatial resolution. This is
carried out by using a series of synthetic specklages imposed with planar
sinusoidal displacements with various spatial fesgues. Apart from the use of
different DIC algorithms, other parameters and su® e.g. grey-intensity
interpolation, are the same in the comparison. e sequel, the Kriging DIC
algorithm is briefly introduced, the methodology fbe comparison is explained and
new improved definitions of precision and spatiesalutions are given. Finally,
results are produced that illustrate the good perémce of the Kriging DIC algorithm.



2.Kriging DIC

Kriging DIC [26] is a new global DIC algorithm witexcellent robustness to image
noise, good adaptation to displacement fields,iaddpendent of user intervention. It
is effective for a wide range of applications. Ather validation of the performance
of the method could lead to improvements in prospe@pplications and should be
beneficial for further research. In the followirtge details of Kriging DIC approach
are very briefly introduced.

It is well known that DIC is a full-field measurentegechnique which employs area-
match algorithms to determine underlying defornratimetween images [27]. The
matching criterion is normally interpreted in therrh of minimising the Sum of
Squared Differences (SSD) [28] of grey intensitietween two images. The SSD
criterion may be written as,

CSSD:argminJ‘O(g(x+ u(x,2),z ¢ x g~ ¢ x)%2 ® (1)

where® denotes the Rol in the first image. The displacer{e(x, 2,  x 3) may
be understood as the optical flow of the speckléepa intensity from a reference
image f (x, z) to its corresponding deformed imagéx, 2 with X, Z coordinates in

pixels. The whole Rol may be divided into a largenber of small ‘subsets’ [7]
(subset-based DIC) or be treated as a single fatdpset’ (global DIC) to carry out
the correlation.

In order to find a solution for the DIC correlationterion, the displacement field of a
subset or Rol may be modelled using a shape functith finite unknown
parameters to be determined. For both global ardl I®IC approaches, the

displacement fielc(u(x, 2, M % 2)) can be approximated as a linear combination of

chosen basis functions of unknown parameters [729pwith finite dimensiom,
expressed as

REWICEY:
(2)
v(X, Z)=Z,ﬂj(x 2P

where £,(x,2); j=1,2,..,n are kernel functions anqouj, R, j=1,2...,n are
combination coefficients. The grey intensity imag(ax+ ux 3, 2+ ¢ x)z) is an
implicit function of (u(x 2, x 3) and the spatial-domain Newton-Raphson

iteration [30, 31] is usually applied to solve the minim@aproblem.



As a global algorithm, Kriging DIC is implemented by apptyim Kriging regression
model as the global shape function to estimate the true disgatéeid W(X, 2 as a
Best Linear Unbiased Prediction (BLUP) [32], whevn€X Z)I]{ uxz v X}
represents the single-direction displacement field (i.e. eitli@rz) or v(x 2) ).

Specifically, (X 2 is modelled as a realisation of a random function which
combines a deterministic regression model and a zero-mean stodieddtif33].

Denoting w, =[w,,---,w,]" as displacements of a set of chosen control points

(x. z.), j=1,2,...n,, the displacement respons{x 2 at an arbitrary untried
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location (X,2) can be formulated by the Kriging model in terms aflinear

combination of the sample valugg [34, 26],
W(X, Z):ZK,‘(X 2 VjVZKTWo ©))
j=1

where the Kriging weights are given by,

k(% 2)=(k Ky - ) =R'1(r(x Z)—C(CTR'lc)_l(CTR'lr( x 3-c( X )j
(4)
The matrixC and vectorc contain regression-function terms correspondinghto

control points and the point of intere{s{ z) respectively. In the present study the
exponential (or Gaussian) kernel function,

ik :eXp(_ﬂx(Xj _Xk)_ﬁz(zj - 4)) ®)

is used to define the correlation between contoahgs, in matrixR, and between the
point of interestx, z) and each of the control points, in vectdk, z). The Kriging

weights are optimised by minimising the mean sq{&l®E) using the parametets,

v, and a regularisation parameter that accounts fasorement imprecision at the

control points [26]. This formulation relies on assumption that the displacement
function is smooth and continuous (i.e. withouegularities or discontinuities).

Apart from the application of the Kriging shape dtian, Kriging DIC also has
several special features which are absent fronsici@sDIC algorithms. Based on the
discussion in [26], some general remarks may besragadollows:

» Uncertainty in the Kriging DIC estimate is represehby a Gaussian random
process with measurement errors incorporated @@orrelation matrix.

* A global optimisation process results in the mastbpble estimate (rather
than the best fit) — it does so automatically withoser intervention.



» Kriging DIC is capable of adapting to any irregutdistribution of control
points (as opposed to regular or uniform distridms) to better represent
spatial variation in what is being measured.

* The optimal number and distribution of control geircan be achieved
automatically through a self-adaptive updating pssc

3. Measurement precision and spatial resolution

In this section a procedure is explained whichsiseatially similar that described by
Bornert et al. [11] and Wittevrongel et al. [8]. Wever, whereas in [8] the threshold
on measurement precision is based only on therdifte in amplitude between the
imposed sinusoid and the corresponding measurenmetite present work a more
complete measure of the discrepancy is used. Wi lvéith a general measure of

discrepancy, denoted by the vecfer} ' . Without being specific it represents in

some way the difference between the imposed siduand measurement at the
control points,i =1,...,n, of the Kriging model. The statistics of error mien be

defined in terms of the estimated mean and stargkariation (STD) as,

P
n

g = (6)
and
n 2 n 2
|yl (X
o, = (7)
n(n-1)
and the root mean squared error (RMSE) is given by,
RMS = [0 45 ®)

The unidirectional planar sinusoid imposed in oe tlectangular speckle pattern
defines the true displacement as,

u, = Asin 2—7ij
p
u,=0

(9)

whereA andp denote the amplitude and period.

Examples of the imposed sinusoid and measuredadispient are shown in Figure 1
for subset-based and Kriging DIC. The sine wavedarmamplitude 5 pixels, a period



of 75 pixels and zero-mean Gaussian noise is aditbda standard deviation 3 grey
values. The deformed speckle pattern [8, 11] ismshin Figure 2. The red dashed
lines shown in Figure 1 are constructed normalh® measurement at the Kriging

control points. This case illustrates one candidasgasure of the discrepan{;yi}in:l

given by the difference between the measurementladéhtersection of the normal
with the sinusoid. Another possibility would beuse the discrepancy measured only
in the direction of the displacement (i.e. the Yedtion discrepancy), but in this case
one would expect the discrepancy to be greater ttinmeasured in the direction of
the normal. The smaller the measure of discrepémeybetter, and therefore normal
measure is considered to be superior to the Y4ilreeneasure. Of course, since the
sinusoid is by definition a nonlinear function ®f it is necessary to iterate to
determine the intersection precisely.

The displacement measurement precision and spasalution were defined in
general terms in the Introduction. In the resutesspnted here the spatial resolution is
understood to be one half of the lowest spatialogem pixels at which the DIC
measurement is able to reproduce the true dispkeeto within aRMS of 5% or

1.5% of the amplitude of the sinusoid. The precisis defined as the standard
deviationo, (corresponding to the 5% or 1.5% discrepancyRWS ) measured in
pixels in either the normal direction or the Y-ditien.
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Figure 1 The normal discrepancy: (a) Subset DI€ 8izx31, (b) Subset DIC size
41x41, (c) Subset DIC with subset size 51x51, (d)s&t DIC with subset size 61x61,
(e) T order Kriging DIC.

0 200 400 600 800 1000 1200

Figure 2 Deformed speckle pattern with imposedsimal displacement field having
a period of 75 pixels.

4. Performance of Kriging DIC algorithm

In this section, performance of the Kriging-DIC @ighm, in terms of the
displacement precision and spatial resolutionsgessed by means of a comparison
with the classical subset-based DIC algorithm. Aieseof images with different
sinusoidal deformation fields are used to calcuthe displacement precision and
spatial resolution of both the subset-based DIC taedKriging DIC. The sinusoidal
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displacement field cannot be perfectly reconstaictesing polynomial shape
functions and therefore provides a good test asthadard procedure for assessing
the performance of DIC algorithms. In this studfe toriginal displacement
measurement is investigated, rather than strairctwisi a derived quantity obtained
by post-processing.

The reference images are defined by an experimesgatkle pattern while the
parameters of the deformed images with sinusoigglacement fields are shown in
Table 1. A region of interest with uniformly dikwted sample points (centres of
subsets) is selected which contains several perwddbe sinusoidal displacement.
Both the subset-based DIC and Kriging DIC methods applied to measure the
displacements at the sample points and then cédctila Y-direction discrepancy and
the normal discrepancy respectively. In both cabes displacement precision is
quantified in terms of standard deviation. The DIC algorithm parameters are given

in Table 2 and the Normalized Sum of Squared Defiees (NSSD) criterion was
instead of the classical SSD for reasons of ine@asbustness [35].

Figure 3 and 4 and Figure 5 and 6 show the roonrsgaared error (RMSE) and the
standard deviation of the normal discrepancy anel Yhdirection discrepancy
respectively. As expected, the RMSE and the stanhdaviation both decrease as the
period of the sinusoid increases. In Figures 3tttk 5% and 1.5% errors are shown
and it is seen that the Kriging models witH, 01 and 2% order regression
polynomials are able to accurately represent sidasadisplacements with low
periods (high spatial frequency). The spatial nesoh of a particular DIC code is
given by half the period corresponding to the isgetion of the RSME curve with the
horizontal 5% or 1.5% line.

Figures 7 and 8 show the normal-direction measunémecision plotted against the
spatial resolution for 5% and 1.5% errors. Thisultes particularly pleasing as it
shows the Kriging DIC method to produce signifi¢artetter precision for the same
spatial resolution as the 31x31 pixel subset Di@ecolrhe equivalent Y-direction
comparison is presented in Figures 9 and 10, whgaé the Kriging DIC approach
produces improved results over the subset DIC cdud, not such a great
improvements as is apparent from Figures 7 andh@ Y-direction measurement
tends to overestimate the error, which is bettémesed using the normal direction
measure, and therefore the result shown in Figueesd 8 is considered to represent a
better performance comparison than in Figures 9 a0d It is clear also that
increasing the order of regression in Kriging Di@akles a small improvement in
spatial resolution to be achieved at considerabd¢ to measurement precision.



Table 1: Parameters of the sinusoidal deformed @®ag

Parameter value
Amplitude 5 pixels
Period 250 ¥~ 200 pixels

Gaussian noise (standard deviation

3 grey values

Table 2: Parameters of DIC algorithms

Subset-based DIC Kriging DIC
Criterion NSSD NSSD
Sample (control) points 31x10 31x10

Subset size

31011 61 (pixels)

Regression order

0, 1st and 2nd

Kriging correlation Exponential
function
Shape function "-order
Intensity interpolation 6x6 bi-cubic 6x6 bi-cubic
\ v T = T T T
el Subset 31
3 b ---&--- Subset 41
2 9fi i —%— Subset 51
g it -+ Subset 61
5 8-l & Kriging O-order  H
] A e
ke ) Kriging 1st-order
§ 7 Wi - Kriging 2nd-order
£ it
©
® 50 b <
o N ®
T 4T
g 31
o p N
o w
£ 4t ‘ e
S S
=
oL 1
40 60 80 100 120 140 160 180 200

Period of the deformation sine wave (pixel)

Figure 3. The RMSE of the normal discrepancy imteof the percentage (5% and
1.5%) of the sinusoidal amplitude vs the periodinfisoidal deformation
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Figure 4. The displacement precision (STD of nordis¢repancy) vs the period of
sinusoidal deformation
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Figure 5. The RMSE of the Y-direction discrepantyarms of the percentage (5%
and 1.5%) of the sinusoidal amplitude vs the peobsinusoidal deformation
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Figure 6. The displacement precision (STD of Y-cli@n discrepancy) vs the period
of sinusoidal deformation
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Figure 7 Displacement precision vs spatial resofufpne half of the periods) based
on the normal-discrepancy RMSE under the criteabB% sinusoidal amplitude, for
subset-based DIC using different subset sizes aiginlg DIC with different order
regression functions
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Figure 8 Displacement precision vs spatial resofutone half of the periods) based
on the normal-discrepancy RMSE under the criteabh.5% sinusoidal amplitude,
for subset-based DIC using different subset sineskaiging DIC with different
order regression functions
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Figure 9 Displacement precision vs spatial resofubased on the Y-direction RMSE
under the criterion of 5% sinusoidal amplitude,gabset-based DIC and Kriging
DIC
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Figure 10 Displacement precision vs spatial resmiubased on the Y-direction
RMSE under the criterion of 1.5% sinusoidal ampléufor subset-based DIC and
Kriging DIC

5. Conclusion

The performance of the Kriging DIC algorithm inresr of measurement precision
and spatial resolution is considered in this studlycomparison is made between
Kriging DIC and the classical subset-based DIC lom hasis of a series of speckle
images with imposed sinusoidal deformation of wasispatial frequencies. Two new
measures of displacement discrepancy are usedefime the measurement precision
and spatial resolution for both local and globaCDThe difference between the true
sinusoid and the measurement is determined mostratety when measured along
the normal at the Kriging control points. This elegba better assessment to be made
of the relative merits of different DIC algorithmResults obtained using the RMSE
criterion of 5% and 1.5% of the sinusoidal ampléushow Kriging DIC to be
superior to classical sub-set based DIC in botpldt®ment measurement precision
and spatial resolution.
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