37 research outputs found

    The pairing symmetry in quasi-one-dimensional superconductor Rb2Mo3As3

    Full text link
    Quasi-one-dimensional electron systems display intrinsic instability towards long-range ordered phases at sufficiently low temperatures. The superconducting orders are of particular interest as they can possess either singlet or triplet pairing symmetry and frequently compete with magnetism. Here we report on muon spin rotation and relaxation (ÎŒ\mathrm{\mu}SR) study of Rb2_2Mo3_3As3_3 characterised by one of the highest critical temperatures $T_{\rm c}=10.4\ \mathrm{K}amongquasi−one−dimensionalsuperconductors.Thetransverse−field among quasi-one-dimensional superconductors. The transverse-field \mathrm{\mu}SRsignalshowsenhanceddampingbelowSR signal shows enhanced damping below T_{\rm c}duetotheformationofvortexlattice.Comparisonofvortexlatticebroadeningagainstsinglegap due to the formation of vortex lattice. Comparison of vortex lattice broadening against single gap s-,, p-and and d-wavemodelsshowsthebestagreementforthewave models shows the best agreement for the s-wavescenariobutwiththeanomalouslysmallsuperconductinggap,wave scenario but with the anomalously small superconducting gap, \Delta_0,to, to T_{\rm c}ratioof ratio of 2\Delta_0/k_{\rm B}T_{\rm c}=2.74(1).Thealternativenodal. The alternative nodal p-waveorwave or d-wavescenarioswithmarginallyworsegoodnessoffitwouldyieldmorerealisticwave scenarios with marginally worse goodness of fit would yield more realistic 2\Delta_0/k_{\rm B}T_{\rm c}=3.50(2)and and 2\Delta_0/k_{\rm B}T_{\rm c}=4.08(1),respectively,andthustheycannotberuledoutwhenaccountingforthesuperconductingstateinRb, respectively, and thus they cannot be ruled out when accounting for the superconducting state in Rb_2MoMo_3AsAs_3$.Comment: 6 page

    Influence of La and Mn vacancies on the electronic and magnetic properties of LaMnO₃ thin films grown by pulsed laser deposition

    Get PDF
    With pulsed laser deposition, we have grown c axis oriented thin films of the nominal composition LaMnO3 (LMO) on LSAT(001) substrates. We find that, depending on the oxygen background pressure during growth, the LMO films contain sizeable amounts of La and/or Mn vacancies that strongly influence their electronic and magnetic properties. Specifically, we show that the Mn/La ratio can be systematically varied from 0.92 at 0.11 mbar to 1.09 at 0.30 mbar of oxygen. The cationic vacancies have markedly different effects that become most pronounced once the samples are fully oxygenated and thus strongly hole doped. All as-grown and thus slightly oxygen-deficient LMO films are ferromagnetic insulators with saturation moments in excess of 2.5 ÎŒB per Mn ion, their transport and optical properties can be understood in terms of trapped ferromagnetic polarons. Upon oxygen annealing, the most La-deficient films develop a metallic response with an even larger ferromagnetic saturation moment of 3.8 ÎŒB per Mn ion. In contrast, in the oxygenated Mn-deficient films, the ferromagnetic order is strongly suppressed to less than 0.5 ÎŒB per Mn ion, and the transport remains insulatorlike. We compare our results with the ones that were previously obtained on bulk samples and present an interpretation in terms of the much stronger disruption of the electronic and magnetic structure by the Mn vacancies as compared to the La vacancies. We also discuss the implications for the growth of LMO thin films with well-defined physical properties that are a prerequisite for the study of interface effects in multilayers

    Magnetic nature of wolframite MgReO4_4

    Get PDF
    Rhenium oxides belonging to the family AAReO4_4 where AA is a metal cation, exhibit interesting electronic and magnetic properties. In this study we have utilized the muon spin rotation/relaxation (ÎŒ+\mu^+SR) technique to study the magnetic properties of the MgReO4_4 compound. To the best of our knowledge, this is the first investigation reported on this interesting material, that is stabilized in a wolframite crystal structure using a special high-pressure synthesis technique. Bulk magnetic studies show the onset of an antiferromagnetic (AF) long range order, or a possible singlet spin state at TC1≈90T_{\rm C1}\approx90~K, with a subtle second high-temperature transition at TC2≈280T_{\rm C2}\approx280~K. Both transitions are also confirmed by heat capacity (CpC_p) measurements. From our ÎŒ+\mu^+SR measurements, it is clear that the sample enters an AF order below TC1=TN≈85T_{\rm C1}=T_{\rm N}\approx85~K. We find no evidence of magnetic signal above TNT_{\rm N}, which indicates that TC2T_{\rm C2} is likely linked to a structural transition. Further, via sensitive zero field (ZF) ÎŒ+\mu^+SR measurements we find evidence of a spin reorientation at TCant≈65T_{\rm Cant}\approx65~K. This points towards a transition from a collinear AF into a canted AF order at low temperature, which is proposed to be driven by competing magnetic interactions

    First demonstration of tuning between the Kitaev and Ising limits in a honeycomb lattice

    Full text link
    Recent observations of novel spin-orbit coupled states have generated tremendous interest in 4d/5d4d/5d transition metal systems. A prime example is the Jeff=12J_{\text{eff}}=\frac{1}{2} state in iridate materials and α\alpha-RuCl3_{3} that drives Kitaev interactions. Here, by tuning the competition between spin-orbit interaction (λSOC\lambda_{\text{SOC}}) and trigonal crystal field splitting (ΔT\Delta_\text{T}), we restructure the spin-orbital wave functions into a novel ÎŒ=12\mu=\frac{1}{2} state that drives Ising interactions. This is done via a topochemical reaction that converts Li2_{2}RhO3_{3} to Ag3_{3}LiRh2_{2}O6_{6}, leading to an enhanced trigonal distortion and a diminished spin-orbit coupling in the latter compound. Using perturbation theory, we present an explicit expression for the new ÎŒ=12\mu=\frac{1}{2} state in the limit ΔT≫λSOC\Delta_\text{T}\gg \lambda_{\text{SOC}} realized in Ag3_{3}LiRh2_{2}O6_{6}, different from the conventional Jeff=12J_\text{eff}=\frac{1}{2} state in the limit λSOC≫ΔT\lambda_{\text{SOC}}\gg \Delta_\text{T} realized in Li2_{2}RhO3_{3}. The change of ground state is followed by a dramatic change of magnetism from a 6 K spin-glass in Li2_{2}RhO3_{3} to a 94 K antiferromagnet in Ag3_{3}LiRh2_{2}O6_{6}. These results open a pathway for tuning materials between the two limits and creating a rich magnetic phase diagram.Comment: 22 pages, 4 figure

    Probing the magnetic polaron state in the ferromagnetic semiconductor HgCr2Se4 with muon-spin spectroscopy and resistance-fluctuation measurements

    Get PDF
    Combined resistance noise and muon-spin relaxation (ÎŒSR) measurements of the ferromagnetic semiconductor HgCr2Se4 suggest a degree of magnetoelectric coupling and provide evidence for the existence of isolated magnetic polarons. These form at elevated temperatures and undergo a percolation transition with a drastic enhancement of the low-frequency 1/ f -type charge fluctuations at the insulator-to-metal transition at ∌95–98 K in the vicinity of the magnetic ordering temperature TC ∌ 105–107 K. Upon approaching the percolation threshold from above, the strikingly unusual dynamics of a distinct two-level fluctuator superimposed on the 1/ f noise can be described by a slowing down of the dynamics of a nanoscale magnetic cluster, a magnetic polaron, when taking into account an effective radius of the polaron depending on the spin correlation length. Coinciding temperature scales found in ÎŒSR and noise measurements suggest changes in the magnetic dynamics over a wide range of frequencies and are consistent with the existence of large polarized and domain-wall-like regions at low temperatures, that result from the freezing of spin dynamics at the magnetic polaron percolation transition

    Partitioning the two-leg spin ladder in Ba2Cu1– xZnxTeO6 : from magnetic order through spin-freezing to paramagnetism

    Get PDF
    E.J.C., O.M., and C.P. acknowledge financial support from the Leverhulme Trust Research Project Grant No. RPG-2017-109. O.M. is grateful for funding via the Leverhulme Trust Early Career Fellowship ECF-2021-170. A.S.G. acknowledges funding through an EPSRC Early Career Fellowship EP/ T011130/1. A.S.G. and H.T. acknowledge funding through the Humboldt Foundation and the Max Planck Institute for Solid State Research. The authors thank the Science and Technology Facilities Council for beamtime allocated at ISIS through proposal RB1990046 (DOI: 10. 5286/ISIS.E.RB1990046) and the Swiss Muon Source at the Paul Scherrer Institute through proposal numbers 20150959 and 20211440. The authors are grateful for access to the MPMS3 instrument at The Royce Discovery Centre at the University of Sheffield (EPSRC grant no. EP/R00661X/1) and the PPMS instrument at the University of St. Andrews (EPSRC grant no. EP/T031441/1).Ba2CuTeO6 has attracted significant attention as it contains a two-leg spin ladder of Cu2+ cations that lies in close proximity to a quantum critical point. Recently, Ba2CuTeO6 has been shown to accommodate chemical substitutions, which can significantly tune its magnetic behavior. Here, we investigate the effects of substitution for non-magnetic Zn2+ impurities at the Cu2+ site, partitioning the spin ladders. Results from bulk thermodynamic and local muon magnetic characterization on the Ba2Cu1 – xZnxTeO6 solid solution (0 ≀ x ≀ 0.6) indicate that Zn2+ partitions the Cu2+ spin ladders into clusters and can be considered using the percolation theory. As the average cluster size decreases with increasing Zn2+ substitution, there is an evolving transition from long-range order to spin-freezing as the critical cluster size is reached between x = 0.1 to x = 0.2, beyond which the behavior became paramagnetic. This demonstrates well-controlled tuning of the magnetic disorder, which is highly topical across a range of low-dimensional Cu2+-based materials. However, in many of these cases, the chemical disorder is also relatively strong in contrast to Ba2CuTeO6 and its derivatives. Therefore, Ba2Cu1 – xZnxTeO6 provides an ideal model system for isolating the effect of defects and segmentation in low-dimensional quantum magnets.Publisher PDFPeer reviewe

    Entanglement between Muon and I > 1/2 Nuclear Spins as a Probe of Charge Environment

    Get PDF
    We report on the first example of quantum coherence between the spins of muons and quadrupolar nuclei. We reveal that these entangled states are highly sensitive to a local charge environment and thus, can be deployed as a functional quantum sensor of that environment. The quantum coherence effect was observed in vanadium intermetallic compounds which adopt the A15 crystal structure, and whose members include all technologically pertinent superconductors. Furthermore, the extreme sensitivity of the entangled states to the local structural and electronic environments emerges through the quadrupolar interaction with the electric field gradient due to the charge distribution at the nuclear (I >1/2) sites. This case study demonstrates that positive muons can be used as a quantum sensing tool to also probe structural and charge-related phenomena in materials, even in the absence of magnetic degrees of freedom

    Single-domain stripe order in a high-temperature superconductor

    Full text link
    The coupling of spin, charge and lattice degrees of freedom results in the emergence of novel states of matter across many classes of strongly correlated electron materials. A model example is unconventional superconductivity, which is widely believed to arise from the coupling of electrons via spin excitations. In cuprate high-temperature superconductors, the interplay of charge and spin degrees of freedom is also reflected in a zoo of charge and spin-density wave orders that are intertwined with superconductivity. A key question is whether the different types of density waves merely coexist or are indeed directly coupled. Here we profit from a neutron scattering technique with superior beam-focusing that allows us to probe the subtle spin-density wave order in the prototypical high-temperature superconductor La1.88{}_{1.88}Sr0.12{}_{0.12}CuO4{}_{4} under applied uniaxial pressure to demonstrate that the two density waves respond to the external tuning parameter in the same manner. Our result shows that suitable models for high-temperature superconductivity must equally account for charge and spin degrees of freedom via uniaxial charge-spin stripe fluctuations

    PHT427 as an effective New Delhi metallo-ÎČ-lactamase-1 (NDM-1) inhibitor restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1

    Get PDF
    IntroductionWith the increasingly serious problem of bacterial drug resistance caused by NDM-1, it is an important strategy to find effective inhibitors to assist ÎČ-lactam antibiotic treatment against NDM-1 resistant bacteria. In this study, PHT427 (4-dodecyl-N-1,3,4-thiadiazol-2-yl-benzenesulfonamide) was identified as a novel NDM-1 inhibitor and restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1.MethodsWe used a high throughput screening model to find NDM-1 inhibitor in the library of small molecular compounds. The interaction between the hit compound PHT427 and NDM-1 was analyzed by fluorescence quenching, surface plasmon resonance (SPR) assay, and molecular docking analysis. The efficacy of the compound in combination with meropenem was evaluated by determining the FICIs of Escherichia coli BL21(DE3)/pET30a(+)-blaNDM–1 and Klebsiella pneumoniae clinical strain C1928 (producing NDM-1). In addition, the mechanism of the inhibitory effect of PHT427 on NDM-1 was studied by site mutation, SPR, and zinc supplementation assays.ResultsPHT427 was identified as an inhibitor of NDM-1. It could significantly inhibit the activity of NDM-1 with an IC50 of 1.42 ÎŒmol/L, and restored the susceptibility of meropenem against E. coli BL21(DE3)/pET30a(+)-blaNDM–1 and K. pneumoniae clinical strain C1928 (producing NDM-1) in vitro. The mechanism study indicated that PHT427 could act on the zinc ions at the active site of NDM-1 and the catalytic key amino acid residues simultaneously. The mutation of Asn220 and Gln123 abolished the affinity of NDM-1 by PHT427 via SPR assay.DiscussionThis is the first report that PHT427 is a promising lead compound against carbapenem-resistant bacteria and it merits chemical optimization for drug development
    corecore