51 research outputs found

    Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles

    Get PDF
    To maintain the female reproductive lifespan, the majority of ovarian primordial follicles are preserved in a quiescent state in order to provide ova for later reproductive life. However, the molecular mechanism that maintains the long quiescence of primordial follicles is poorly understood. Here we provide genetic evidence to show that the tumor suppressor tuberous sclerosis complex 1 (Tsc1), which negatively regulates mammalian target of rapamycin complex 1 (mTORC1), functions in oocytes to maintain the quiescence of primordial follicles. In mutant mice lacking the Tsc1 gene in oocytes, the entire pool of primordial follicles is activated prematurely due to elevated mTORC1 activity in the oocyte, ending up with follicular depletion in early adulthood and causing premature ovarian failure (POF). We further show that maintenance of the quiescence of primordial follicles requires synergistic, collaborative functioning of both Tsc and PTEN (phosphatase and tensin homolog deleted on chromosome 10) and that these two molecules suppress follicular activation through distinct ways. Our results suggest that Tsc/mTORC1 signaling and PTEN/PI3K (phosphatidylinositol 3 kinase) signaling synergistically regulate the dormancy and activation of primordial follicles, and together ensure the proper length of female reproductive life. Deregulation of these signaling pathways in oocytes results in pathological conditions of the ovary, including POF and infertility

    Morphometric and gene expression analyses of stromal expansion during development of the bovine fetal ovary

    Get PDF
    During ovarian development stroma from the mesonephros penetrates and expands into the ovarian primordium and thus appears to be involved, at least physically, in the formation of ovigerous cords, follicles and surface epithelium. Cortical stromal development during gestation in bovine fetal ovaries (n = 27) was characterised by immunohistochemistry and by mRNA analyses. Stroma was identified by immunostaining of stromal matrix collagen type I and proliferating cells were identified by Ki67 expression. The cortical and medullar volume expanded across gestation, with the rate of cortical expansion slowing over time. During gestation, the proportion of stroma in the cortex and total volume in the cortex significantly increased (P  0.05). The expression levels of 12 genes out of 18 examined, including osteoglycin (OGN) and lumican (LUM), were significantly increased later in development (P < 0.05) and the expression of many genes was positively correlated with other genes and with gestational age. Thus, the rate of cortical stromal expansion peaked in early gestation due to cell proliferation, whilst late in development expression of extracellular matrix genes increased.M.D. Hartanti, A K. Hummitzsch, H.F. Irving-Rodgers, W.M. Bonner, K.J. Copping, R.A. Anderson, I.C. McMillen, V.E.A. Perry and R.J. Rodger

    Proliferating Cell Nuclear Antigen (PCNA) Regulates Primordial Follicle Assembly by Promoting Apoptosis of Oocytes in Fetal and Neonatal Mouse Ovaries

    Get PDF
    Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries
    corecore