114 research outputs found

    Fast, exact CMB power spectrum estimation for a certain class of observational strategies

    Get PDF
    We describe a class of observational strategies for probing the anisotropies in the cosmic microwave background (CMB) where the instrument scans on rings which can be combined into an n-torus, the {\em ring torus}. This class has the remarkable property that it allows exact maximum likelihood power spectrum estimation in of order N2N^2 operations (if the size of the data set is NN) under circumstances which would previously have made this analysis intractable: correlated receiver noise, arbitrary asymmetric beam shapes and far side lobes, non-uniform distribution of integration time on the sky and partial sky coverage. This ease of computation gives us an important theoretical tool for understanding the impact of instrumental effects on CMB observables and hence for the design and analysis of the CMB observations of the future. There are members of this class which closely approximate the MAP and Planck satellite missions. We present a numerical example where we apply our ring torus methods to a simulated data set from a CMB mission covering a 20 degree patch on the sky to compute the maximum likelihood estimate of the power spectrum CℓC_\ell with unprecedented efficiency.Comment: RevTeX, 14 pages, 5 figures. A full resolution version of Figure 1 and additional materials are at http://feynman.princeton.edu/~bwandelt/RT

    Massive Neutrinos Leave Fingerprints on Cosmic Voids

    Get PDF
    Massive neutrinos uniquely affect cosmic voids. We explore their impact on void clustering using both the DEMNUni and MassiveNuS simulations. For voids, neutrino effects depend on the observed void tracers. As the neutrino mass increases, the number of small voids traced by cold dark matter particles increases and the number of large voids decreases. Surprisingly, when massive, highly biased, halos are used as tracers, we find the opposite effect. How neutrinos impact the scale at which voids cluster and the void correlation is similarly sensitive to the tracers. This scale dependent trend is not due to simulation volume or halo density. The interplay of these signatures in the void abundance and clustering leaves a distinct fingerprint that could be detected with observations and potentially help break degeneracies between different cosmological parameters. This paper paves the way to exploit cosmic voids in future surveys to constrain the mass of neutrinos

    Analysis of CMB polarization on an incomplete sky

    Get PDF
    The full sky cosmic microwave background polarization field can be decomposed into 'electric' and 'magnetic' components. Working in harmonic space we construct window functions that allow clean separation of the electric and magnetic modes from observations over only a portion of the sky. Our construction is exact for azimuthally symmetric patches, but should continue to perform well for arbitrary patches. From the window functions we obtain variables that allow for robust estimation of the magnetic component without risk of contamination from the probably much larger electric signal. For isotropic, uncorrelated noise the variables have a very simple diagonal noise correlation, and further analysis using them should be no harder than analysing the temperature field. For an azimuthally-symmetric patch, such as that obtained from survey missions when the galactic region is removed, the exactly-separated variables are fast to compute allowing us to estimate the magnetic signal that could be detected by the Planck satellite in the absence of non-galactic foregrounds. We also discuss the sensitivity of future experiments to tensor modes in the presence of a magnetic signal generated by weak lensing, and give lossless methods for analysing the electric polarization field in the case that the magnetic component is negligible.Comment: 27 pages, 8 figures. New appendix on weak signal detection and revised plots using a better statistic. Other changes to match version accepted by PRD. Sample source code now available at http://cosmologist.info/pola

    Atomic Dark Matter

    Full text link
    We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Protohalo formation can be suppressed below Mproto∌103−106M⊙M_{proto} \sim 10^3 - 10^6 M_{\odot} for weak scale dark matter due to Ion-Radiation interactions in the dark sector. Moreover, weak-scale dark atoms can accommodate hyperfine splittings of order 100 \kev, consistent with the inelastic dark matter interpretation of the DAMA data while naturally evading direct detection bounds.Comment: 17 pages, 3 figure

    CMBfit: Rapid WMAP likelihood calculations with normal parameters

    Full text link
    We present a method for ultra-fast confrontation of the WMAP cosmic microwave background observations with theoretical models, implemented as a publicly available software package called CMBfit, useful for anyone wishing to measure cosmological parameters by combining WMAP with other observations. The method takes advantage of the underlying physics by transforming into a set of parameters where the WMAP likelihood surface is accurately fit by the exponential of a quartic or sextic polynomial. Building on previous physics based approximations by Hu et.al., Kosowsky et.al. and Chu et.al., it combines their speed with precision cosmology grade accuracy. A Fortran code for computing the WMAP likelihood for a given set of parameters is provided, pre-calibrated against CMBfast, accurate to Delta lnL ~ 0.05 over the entire 2sigma region of the parameter space for 6 parameter ``vanilla'' Lambda CDM models. We also provide 7-parameter fits including spatial curvature, gravitational waves and a running spectral index.Comment: 14 pages, 8 figures, References added, accepted for publication in Phys.Rev.D., a Fortran code can be downloaded from http://space.mit.edu/home/tegmark/cmbfit

    Precision Primordial 4^4He Measurement with CMB Experiments

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are two major pillars of cosmology. Standard BBN accurately predicts the primordial light element abundances (4^4He, D, 3^3He and 7^7Li), depending on one parameter, the baryon density. Light element observations are used as a baryometers. The CMB anisotropies also contain information about the content of the universe which allows an important consistency check on the Big Bang model. In addition CMB observations now have sufficient accuracy to not only determine the total baryon density, but also resolve its principal constituents, H and 4^4He. We present a global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light element observations. We find ΩBh2=0.025+0.0019−0.0026\Omega_{B}h^{2}=0.025+0.0019-0.0026 and Yp=0.250+0.010−0.014Y_{p}=0.250+0.010-0.014 (fraction of baryon mass as 4^4He) using CMB data alone, in agreement with 4^4He abundance observations. With this concordance established we show that the inclusion of BBN theory priors significantly reduces the volume of parameter space. In this case, we find ΩBh2=0.0244+0.00137−0.00284\Omega_{B}h^2=0.0244+0.00137-0.00284 and Yp=0.2493+0.0006−0.001Y_p = 0.2493+0.0006-0.001. We also find that the inclusion of deuterium abundance observations reduces the YpY_p and ΩBh2\Omega_{B}h^2 ranges by a factor of ∌\sim 2. Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen BBN and the CMB as tools for precision cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with journal versio

    The Einstein polarization interferometer for cosmology (EPIC) and the millimeter-wave bolometric interferometer (MBI)

    Get PDF
    We provide an overview of a mission concept study underway for the Einstein Inflation Probe (EIP). Our study investigates the advantages and tradeoffs of using an interferometer (EPIC) for the mission. We also report on the status of the millimeter-wave bolometric interferometer (MBI), a ground-based pathfinder optimized for degree-scale CMB polarization measurements at 90 GHz

    Planck intermediate results. VIII. Filaments between interacting clusters

    Get PDF
    About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    Planck intermediate results: IV. the XMM-Newton validation programme for new Planck galaxy clusters

    Get PDF
    • 

    corecore