9 research outputs found

    Integrative Transcriptome and Metabolome Analysis to Reveal Red Leaf Coloration in Shiya Tea (Adinandra nitida)

    No full text
    Background: Adinandra nitida, commonly known as Shiya tea, is a healthcare drink enriched in several phenolic acids and flavonoids, with a purple-red leaf variety possessing a unique flavor and a higher economic value. However, the mechanisms underlying leaf coloration and senescence discoloration remain unknown. Methods: Here, we compared both varieties of A. nitida (purple-red leaf, RL, and green leaf, GL) at two stages of development. To make sure the difference in leaf color in these four groups, several indexes, leaf colorimetric differences, H2O2 content in leaf cells, and antioxidant enzymes activities (superoxide dismutase (SOD), catalase (CAT)) were measured. With the integration of metabolome and transcriptome becoming a trend, metabolites in four groups were detected using an Ultra performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) system, and the transcriptome was performed after the extraction of RNA in samples. Afterward, the activities of laccase (LAC) and peroxidase (POD) were measured for further analysis. Results: The deeper or discoloration of leaf color was not caused by the reactive oxygen species (ROS) stress because the H2O2 content was similar for each group. And the SOD and CAT activities improved significantly in young leaves, especially RL_young. Metabolome data showed a large shift in four groups. By focusing on the variation of flavonoids and 1079 metabolites detected in both varieties, along with the accumulation of flavonoids and tannins, proanthocyanins (PAs) were mostly accumulated in young RL. Differential analysis of expressed genes (DEGs) revealed six genes associated with leaf discoloration as hub factors, of which ANRs (ANR1 and ANR2) were positively correlated with the accumulation of PA in RL. Conclusions: Using integrate analysis of metabolome and transcriptome, our results revealed that six structural genes found in proanthocyanin biosynthesis, two reductases (ANR), two oxidative polymerases (POD64, LAC17) and two TFs (bHLH3 and MYB4) related to biosynthesis and polymerization of proanthocyanins were associated with not only the difference of GL and RL but also the faded coloration in two RL groups (RL_young and RL_old), which provided a foundation for further research on an understanding of the regulatory genes and the enzymes specific for proanthocyanidin biosynthesis, facilitating the genetic engineering of crops for beneficial metabolite accumulation

    Nanocomplexes loaded with miR-128-3p for enhancing chemotherapy effect of colorectal cancer through dual-targeting silence the activity of PI3K/AKT and MEK/ERK pathway

    No full text
    Although microRNAs (miRNAs)-based cancer therapy strategies have been proved to be efficient and superior to chemotherapeutic agents in certain extent, the unstable properties of miRNAs significantly impaired the wide application. Therefore, how to safely deliver the miRNAs to the targeted site of action is the most pivotal step to achieve the ideal treatment effect. In the present work, the miR-128-3p, which is able of inducing chromosomal instability, was loaded into the nanocomplexes developed by the PEG-PDMAEMA (PDMAEMA-NP). By this way, the miR-128-3p was shielded from exposure to various degrading enzymes in bloodstream. Additionally, the PEGylation endowed the PDMAEMA-NP with long time of circulation as demonstrated in vivo by pharmacokinetics investigation. To target and deliver the miR-128-3p to the site of action, a tumor-homing peptide CPKSNNGVC, which specifically targets the monocarboxylate transporter 1 (MCT1), was decorated on the surface of PDMAEMA-NP. Both in vitro and in vivo experiments demonstrated that more efficient delivery of miR-128-3p to cells or tumor tissues was obtained by the PDMAEMA-NP than plasmid. Additionally, modification of C peptides further enhanced the tumor accumulation of miR-128-3p, and in turn contributed to the stronger tumor growth inhibition effect. Underlying mechanisms study revealed that the miR-128-3p inhibited the growth, migration, and invasion of colorectal cancer (CRC) cells and progress of CRC tissues through silence of the activity of PI3K/AKT and MEK/ERK pathway. By this way, the chemotherapy effect of 5-Fluorouracil (5-Fu) was dramatically improved after co-treating the cells with miR-128-3p formulations

    Identification of Chalcone Isomerase Family Genes and Roles of <i>CnCHI4</i> in Flavonoid Metabolism in <i>Camellia nitidissima</i>

    No full text
    Camellia nitidissima is a woody plant with high ornamental value, and its golden-yellow flowers are rich in a variety of bioactive substances, especially flavonoids, that are beneficial to human health. Chalcone isomerases (CHIs) are key enzymes in the flavonoid biosynthesis pathway; however, there is a scarcity of information regarding the CHI family genes of C. nitidissima. In this study, seven CHI genes of C. nitidissima were identified and divided into three subfamilies by phylogenetic analysis. The results of multiple sequence alignment revealed that, unlike CnCHI1/5/6/7, CnCHI2/3/4 are bona fide CHIs that contain all the active site and critical catalytic residues. Analysis of the expression patterns of CnCHIs and the total flavonoid content of the flowers at different developmental stages revealed that CnCHI4 might play an essential role in the flavonoid biosynthesis pathway of C. nitidissima. CnCHI4 overexpression significantly increased flavonoid production in Nicotiana tabacum and C. nitidissima. The results of the dual-luciferase reporter assay and yeast one-hybrid system revealed that CnMYB7 was the key transcription factor that governed the transcription of CnCHI4. The study provides a comprehensive understanding of the CHI family genes of C. nitidissima and performed a preliminary analysis of their functions and regulatory mechanisms

    Are medical record front page data suitable for risk adjustment in hospital performance measurement? Development and validation of a risk model of in-hospital mortality after acute myocardial infarction

    No full text
    Objectives To develop a model of in-hospital mortality using medical record front page (MRFP) data and assess its validity in case-mix standardisation by comparison with a model developed using the complete medical record data.Design A nationally representative retrospective study.Setting Representative hospitals in China, covering 161 hospitals in modelling cohort and 156 hospitals in validation cohort.Participants Representative patients admitted for acute myocardial infarction. 8370 patients in modelling cohort and 9704 patients in validation cohort.Primary outcome measures In-hospital mortality, which was defined explicitly as death that occurred during hospitalisation, and the hospital-level risk standardised mortality rate (RSMR).Results A total of 14 variables were included in the model predicting in-hospital mortality based on MRFP data, with the area under receiver operating characteristic curve of 0.78 among modelling cohort and 0.79 among validation cohort. The median of absolute difference between the hospital RSMR predicted by hierarchical generalised linear models established based on MRFP data and complete medical record data, which was built as ‘reference model’, was 0.08% (10th and 90th percentiles: −1.8% and 1.6%). In the regression model comparing the RSMR between two models, the slope and intercept of the regression equation is 0.90 and 0.007 in modelling cohort, while 0.85 and 0.010 in validation cohort, which indicated that the evaluation capability from two models were very similar.Conclusions The models based on MRFP data showed good discrimination and calibration capability, as well as similar risk prediction effect in comparison with the model based on complete medical record data, which proved that MRFP data could be suitable for risk adjustment in hospital performance measurement
    corecore