59 research outputs found

    Development of a comprehensive annotation and curation framework for analysis of Glossina Morsitans Morsitans expresses sequence tags

    Get PDF
    Philosophiae Doctor - PhDThis study has successfully identified transcripts differentially expressed in the salivary gland and midgut and provides candidate genes that are critical to response to parasite invasion. Furthermore, an open-source Glossina resource (G-ESTMAP) was developed that provides interactive features and browsing of functional genomics data for researchers working in the field of Trypanosomiasis on the African continent.South Afric

    Working conditions and public health risks in slaughterhouses in western Kenya

    Get PDF
    Background: Inadequate facilities and hygiene at slaughterhouses can result in contamination of meat and occupational hazards to workers. The objectives of this study were to assess current conditions in slaughterhouses in western Kenya and the knowledge, and practices of the slaughterhouse workers toward hygiene and sanitation. Methods: Between February and October 2012 all consenting slaughterhouses in the study area were recruited. A standardised questionnaire relating to facilities and practices in the slaughterhouse was administered to the foreperson at each site. A second questionnaire was used to capture individual slaughterhouse workers’ knowledge, practices and recent health events. Results: A total of 738 slaughterhouse workers from 142 slaughterhouses completed questionnaires. Many slaughterhouses had poor infrastructure, 65% (95% CI 63–67%) had a roof, cement floor and walls, 60% (95% CI 57–62%) had a toilet and 20% (95% CI 18–22%) had hand-washing facilities. The meat inspector visited 90% (95% CI 92–95%) of slaughterhouses but antemortem inspection was practiced at only 7% (95% CI 6–8%). Nine percent (95% CI 7–10%) of slaughterhouses slaughtered sick animals. Only half of workers wore personal protective clothing - 53% (95% CI 51–55%) wore protective coats and 49% (95% CI 46–51%) wore rubber boots. Knowledge of zoonotic disease was low with only 31% (95% CI 29–33%) of workers aware that disease could be transmitted from animals. Conclusions: The current working conditions in slaughterhouses in western Kenya are not in line with the recommendations of the Meat Control Act of Kenya. Current facilities and practices may increase occupational exposure to disease or injury and contaminated meat may enter the consumer market. The findings of this study could enable the development of appropriate interventions to minimise public health risks. Initially, improvements need to be made to facilities and practices to improve worker safety and reduce the risk of food contamination. Simultaneously, training programmes should target workers and inspectors to improve awareness of the risks. In addition, education of health care workers should highlight the increased risks of injury and disease in slaughterhouse workers. Finally, enhanced surveillance, targeting slaughterhouse workers could be used to detect disease outbreaks. This “One Health” approach to disease surveillance is likely to benefit workers, producers and consumers

    Metagenomic analysis of viruses associated with maize lethal necrosis in Kenya

    Get PDF
    Background: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. Methods: We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. Results: Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. Conclusion: Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved

    Harnessing landrace diversity empowers wheat breeding

    Get PDF
    Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A.E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, through whole-genome re-sequencing (827 Watkins landraces and 208 modern cultivars) and in-depth field evaluation spanning a decade. We discovered that modern cultivars are derived from just two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium (LD) based haplotypes and association genetics analyses link Watkins genomes to the thousands of high-resolution quantitative trait loci (QTL), and significant marker-trait associations identified. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritised QTL in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilising genetic diversity in crop improvement to achieve sustainable food security.</p

    Genome sequence of the tsetse fly (Glossina morsitans):Vector of African trypanosomiasis

    Get PDF
    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.IS

    Comparative in silico study of congocidine congeners as potential inhibitors of African swine fever virus.

    No full text
    African swine fever virus (ASFV) infection is fatal in domesticated pigs, with a mortality rate approaching 100%. This may result in economic losses and threats to food security. Currently, there are no approved vaccines or antiviral therapies for ASFV. Therefore, in this study, we evaluated congocidine congeners and a tris-benzimidazole as potential inhibitors of ASFV transcription using an in silico approach. We applied redocking of congocidine and docking of its congeners and a tris-benzimidazole to a receptor containing B-DNA with AT-motifs as a target to mimic conserved ASFV late gene promoters. Subsequently, the binding scores of DNA-ligand docked complexes were evaluated and their binding affinity was estimated. Molecular dynamics (MD) simulation was then used to assess ligand behavior within the minor groove. From our results, it is evident the less toxic congocidine congeners and tris-benzimidazole could dock to AT-rich regions significantly. Additionally, the predicted binding affinities had suitable values comparable to other experimentally determined minor groove binders, MD simulation of the docked DNA-ligand complexes and subsequent molecular trajectory visualization further showed that the ligands remained embedded in the minor groove during the time course of simulation, indicating that these ligands may have potential applications in abrogating ASFV transcription

    Challenges and opportunities: A framework for analysis of metagenomic sequencing data

    No full text
    Background: Next-generation sequencing (NGS) allows the analysis of viral sequence variants from select natural environments, presenting a novel opportunity for understanding the genetic diversity present in these ecosystems, virus evolution and allows outbreaks to be followed in great detail. Objective: To gain a better understanding of the potential factors influencing the spread of viruses (in space and time) in small farm ecosystems, we are currently investigating how these viral species are evolving across their entire geographical distribution using a combination of Genomics and Bioinformatics approaches. Methodology: We have developed a bioinformatics pipeline for automating the analyses of viral metagenomes. Furthermore, we are currently developing an information (GISbased) system for collecting, analyzing and reporting of all viral data related to small farm ecosystems to supplement the computational pipeline. Application of these methodologies to viruses will make it possible to explore viral diversity through automatically constructed time-measured phylogenies and perform comparison against thier viromes. Results: This bioinformatics pipeline is designed to provide answers to questions such as when and where did an epidemic begin, how viral populations are genetically structured in space and what are the key determinants of viral spread between geographical regions? The answers to these questions provide insights into the potential factors underlying both the spatio-temporal dynamics and evolution of members of viral families and will help to inform governmental policy aimed at restricting the movements of diseased plant and animal materials and virus-carrying insects within and across national borders by identifying both key transmission routes and the locations in Africa where viruses with increased disease-causing potential commonly arise

    Spatio-temporal characterization of phenotypic resistance in malaria vector species

    No full text
    Abstract Background Malaria, a deadly disease caused by Plasmodium protozoa parasite and transmitted through bites of infected female Anopheles mosquitoes, remains a significant public health challenge in sub-Saharan Africa. Efforts to eliminate malaria have increasingly focused on vector control using insecticides. However, the emergence of insecticide resistance (IR) in malaria vectors pose a formidable obstacle, and the current IR mapping models remain static, relying on fixed coefficients. This study introduces a dynamic spatio-temporal approach to characterize phenotypic resistance in Anopheles gambiae complex and Anopheles arabiensis. We developed a cellular automata (CA) model and applied it to data collected from Ethiopia, Nigeria, Cameroon, Chad, and Burkina Faso. The data encompasses georeferenced records detailing IR levels in mosquito vector populations across various classes of insecticides. In characterizing the dynamic patterns of confirmed resistance, we identified key driving factors through correlation analysis, chi-square tests, and extensive literature review. Results The CA model demonstrated robustness in capturing the spatio-temporal dynamics of confirmed IR states in the vector populations. In our model, the key driving factors included insecticide usage, agricultural activities, human population density, Land Use and Land Cover (LULC) characteristics, and environmental variables. Conclusions The CA model developed offers a robust tool for countries that have limited data on confirmed IR in malaria vectors. The embrace of a dynamical modeling approach and accounting for evolving conditions and influences, contribute to deeper understanding of IR dynamics, and can inform effective strategies for malaria vector control, and prevention in regions facing this critical health challenge

    In silico structural and functional prediction of African swine fever virus protein-B263R reveals features of a TATA-binding protein

    No full text
    African swine fever virus (ASFV) is the etiological agent of ASF, a fatal hemorrhagic fever that affects domestic pigs. There is currently no vaccine against ASFV, making it a significant threat to the pork industry. The ASFV genome sequence has been published; however, about half of ASFV open reading frames have not been characterized in terms of their structure and function despite being essential for our understanding of ASFV pathogenicity. The present study reports the three-dimensional structure and function of uncharacterized protein, pB263R (NP_042780.1), an open reading frame found in all ASFV strains. Sequence-based profiling and hidden Markov model search methods were used to identify remote pB263R homologs. Iterative Threading ASSEmbly Refinement (I-TASSER) was used to model the three-dimensional structure of pB263R. The posterior probability of fold family assignment was calculated using TM-fold, and biological function was assigned using TM-site, RaptorXBinding, Gene Ontology, and TM-align. Our results suggests that pB263R has the features of a TATA-binding protein and is thus likely to be involved in viral gene transcription
    • 

    corecore