26 research outputs found

    Unilateral interactions in granular packings: A model for the anisotropy modulus

    Full text link
    Unilateral interparticle interactions have an effect on the elastic response of granular materials due to the opening and closing of contacts during quasi-static shear deformations. A simplified model is presented, for which constitutive relations can be derived. For biaxial deformations the elastic behavior in this model involves three independent elastic moduli: bulk, shear, and anisotropy modulus. The bulk and the shear modulus, when scaled by the contact density, are independent of the deformation. However, the magnitude of the anisotropy modulus is proportional to the ratio between shear and volumetric strain. Sufficiently far from the jamming transition, when corrections due to non-affine motion become weak, the theoretical predictions are qualitatively in agreement with simulation results.Comment: 6 pages, 5 figure

    Topological Matter, Integrable Models and Fusion Rings

    Full text link
    We show how topological Gk/GkG_k/G_k models can be embedded into the topological matter models that are obtained by perturbing the twisted N=2N=2 supersymmetric, hermitian symmetric, coset models. In particular, this leads to an embedding of the fusion ring of GG as a sub-ring of the perturbed, chiral primary ring. The perturbation of the twisted N=2N=2 model that leads to the fusion ring is also shown to lead to an integrable N=2N=2 supersymmetric field theory when the untwisted N=2N=2 superconformal field theory is perturbed by the same operator and its hermitian conjugate.Comment: 24 page

    Statistical comparison of electron loss and enhancement in the outer radiation belt during storms

    Get PDF
    The near-relativistic electron population in the outer Van Allen radiation belt is highly dynamic and strongly coupled to geomagnetic activity such as storms and substorms, which are driven by the interaction of the magnetosphere with the solar wind. The energy, content and spatial extent of electrons in the outer radiation belt can vary on timescales of hours to days, dictated by the continuously evolving influence of acceleration and loss processes. While net changes in the electron population are directly observable, the relative influence of different processes is far from fully understood. Using a continuous 12-year dataset from the Proton Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX), we statistically compare the relative variations of trapped electrons to those in the bounce loss cone. Our results show that there is a proportional increase in flux entering the bounce loss cone outside the plasmapause during storm main phase and early recovery phase. Loss enhancement is sustained on the dawnside throughout the recovery phase while loss on the duskside is enhanced around minimum Sym-H and quickly diminishes. Spatial variations are also examined in relation to geomagnetic activity, making comparisons to possible causal wave modes such as whistler-mode chorus and plasmaspheric hiss

    Cross-L* coherence of the outer radiation belt during 2 storms and the role of the plasmapause

    Get PDF
    The high energy electron population in Earth’s outer radiation belt is extremely variable, changing by multiple orders of magnitude on timescales that vary from under an hour to several weeks. These changes are typically linked to geomagnetic activity such as storms and substorms. In this study, we seek to understand how coherent changes in the radiation belt are across all radial distances, in order to provide a spatial insight into apparent global variations. We do this by calculating the correlation between fluxes on different L* measured by the PET instrument aboard the SAMPEX spacecraft for times associated with 15 large storms. Our results show that during these times, variations in the 0.63 MeV electron flux are coherent outside the minimum plasmapause location and also coherent inside the minimum plasmapause location, when flux is present. However, variations in the electron fluxes inside the plasmapause show little correlation with those outside the plasmapause. During storm recovery and possibly main phases, flux variations are coherent across all L* regardless of plasmapause location, due to a rapid decrease, followed by an increase in radiation belt fluxes across all L*

    “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy

    Get PDF
    Transformative artificially intelligent tools, such as ChatGPT, designed to generate sophisticated text indistinguishable from that produced by a human, are applicable across a wide range of contexts. The technology presents opportunities as well as, often ethical and legal, challenges, and has the potential for both positive and negative impacts for organisations, society, and individuals. Offering multi-disciplinary insight into some of these, this article brings together 43 contributions from experts in fields such as computer science, marketing, information systems, education, policy, hospitality and tourism, management, publishing, and nursing. The contributors acknowledge ChatGPT’s capabilities to enhance productivity and suggest that it is likely to offer significant gains in the banking, hospitality and tourism, and information technology industries, and enhance business activities, such as management and marketing. Nevertheless, they also consider its limitations, disruptions to practices, threats to privacy and security, and consequences of biases, misuse, and misinformation. However, opinion is split on whether ChatGPT’s use should be restricted or legislated. Drawing on these contributions, the article identifies questions requiring further research across three thematic areas: knowledge, transparency, and ethics; digital transformation of organisations and societies; and teaching, learning, and scholarly research. The avenues for further research include: identifying skills, resources, and capabilities needed to handle generative AI; examining biases of generative AI attributable to training datasets and processes; exploring business and societal contexts best suited for generative AI implementation; determining optimal combinations of human and generative AI for various tasks; identifying ways to assess accuracy of text produced by generative AI; and uncovering the ethical and legal issues in using generative AI across different contexts

    Structural and optical studies of Au doped titanium oxide films

    Get PDF
    Proceedings of the 17th International Conference on Ion Beam Modification of Materials (IBMM 2010)Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 °C. The undoped films were implanted with Au fluences in the range of 5 × 1015 Au/cm2–1 × 1017 Au/cm2 with a energy of 150 keV. At a fluence of 5 × 1016 Au/cm2 the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3–5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 °C, reaching the precipitates dimensions larger than 40 nm at 600 °C. Annealing above 700 °C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps
    corecore