
Acta Mech 225, 2319–2343 (2014)
DOI 10.1007/s00707-014-1155-8

N. Kumar · S. Luding · V. Magnanimo

Macroscopic model with anisotropy based on micro–macro
information

Received: 25 April 2013 / Revised: 2 July 2014 / Published online: 26 July 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Physical experiments can characterize the elastic response of granular materials in terms of macro-
scopic state variables, namely volume (packing) fraction and stress, while the microstructure is not accessible
and thus neglected. Here, by means of numerical simulations, we analyze dense, frictionless granular assem-
blies with the final goal to relate the elastic moduli to the fabric state, i.e., to microstructural averaged contact
network features as contact number density and anisotropy. The particle samples are first isotropically com-
pressed and then quasi-statically sheared under constant volume (undrained conditions). From various static,
relaxed configurations at different shear strains, infinitesimal strain steps are applied to “measure” the effective
elastic response; we quantify the strain needed so that no contact and structure rearrangements, i.e. plastic-
ity, happen. Because of the anisotropy induced by shear, volumetric and deviatoric stresses and strains are
cross-coupled via a single anisotropy modulus, which is proportional to the product of deviatoric fabric and
bulk modulus (i.e., the isotropic fabric). Interestingly, the shear modulus of the material depends also on the
actual deviatoric stress state, along with the contact configuration anisotropy. Finally, a constitutive model
based on incremental evolution equations for stress and fabric is introduced. By using the previously measured
dependence of the stiffness tensor (elastic moduli) on the microstructure, the theory is able to predict with
good agreement the evolution of pressure, shear stress and deviatoric fabric (anisotropy) for an independent
undrained cyclic shear test, including the response to reversal of strain.

1 Introduction

Granular materials behave differently from usual solids or fluids and show peculiar mechanical properties like
dilatancy, history dependence, ratcheting and anisotropy [24,25,28,30,39,40,60,70,75,76,87]. The behavior
of these materials is highly nonlinear and involves plasticity also for very small strain due to rearrangements
of the elementary particles [4,15,22]. The concept of an initial purely elastic regime (small strain) for granular
assemblies is an issue still under debate in the mechanical and geotechnical communities. On the other hand,
approaches that neglect the effect of elastic stored energy are also questionable, i.e., all the work done by the
internal forces is dissipated. Features visible in experiments, like wave propagation, can hardly be described
without considering an elastic regime. In a general picture, both the deformations at contact and the irrecov-
erable rearrangements of the grains sum up to the total strain. The former represents the elastic, reversible
contribution to the behavior of the material. That is, for very small strain, the response of a finite granular
system in static equilibrium can be assumed to be linearly elastic [20,42,59,70], as long as no irreversible
rearrangements take place.
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Despite these arguments and the long-standing debate, basic features of the physics of granular elasticity are
currently unresolved, like the determination of a proper set of state variables to describe the effective moduli.
Physical experiments carried out on sand and glass beads show that wave propagation in the aggregate depends
upon the stress state and the volume fraction [19,32,36,42,80,83]. Recent works [1,28,36,43,87] show that
along with the macroscopic properties (stress and volume fraction) [19,36,86], also the fabric [10,47,61,70,87]
plays a crucial role, as it characterizes, on average, the geometric arrangement of contacts. Due to preparation
and loading path, the microstructure of granular aggregates is often far from isotropic, and this is at the origin
of interesting features in those materials. The mechanical behavior of anisotropic soils is a topic of current
interest for both experimental and theoretical investigations. As one example, extensive experimental work
on anisotropy has been carried out on laboratory-prepared (by careful “raining” or bedding) sand specimens
[81,84]. These and other studies show that the sample deformation characteristics depends highly on the
orientation of the bedding plane with respect to the principal stress and strain axes [19,43,61,82–84]. On the
other hand, when the material is sheared, anisotropy in the contact network develops, as related to the opening
and closing of contacts, restructuring, and the creation and destruction of force-chains, affecting the material
response [3,42,77,80,87].

Most standard constitutive models, involving elasticity and/or plasticity have been applied to describe the
incremental behavior of (an)isotropic granular solids—sometimes with success, but typically only in a limited
range of parameters. In the majority of the models, the stress increment is related to the actual stress state of the
granular system and its density. This is the case for hypoplasticity [23,36], where a single nonlinear tensorial
equation relates the Jaumann stress-rate with strain-rate and stress tensors. Only few theories after the pioneer
work by Cowin [12] consider explicitly the influence of the micro-mechanic structure on the elastic stiffness,
plastic flow rule or non-coaxiality of stress and strain, see [7,8,13,57,58,75,76] and references therein. The
evolution of microstructure due to deformations is an essential part of a constitutive model for granular matter
because it stores the information how different paths have affected the mechanical state of the system. In this
sense, fabric is a tensorial history variable. When included in the formulation, the effect of structure is often
described by a fixed fabric tensor normal to the bedding plane of deposited sands [13,45,76,81]. Recently, Li
and Dafalias [46] have proposed a new framework (rather than a specific constitutive model) by reconsidering
the classical steady state theory by Roscoe et al. [67], with a fabric tensor evolving towards a properly defined
steady state value. This is supported by experimental [84] and extensive numerical works [28,30,47,77,87].
In a similar fashion, the anisotropy model proposed in [48,51] postulates the split of isotropic and deviatoric
stress, strain and fabric and includes the microstructure as a state variable, whose behavior is described by
an evolution equation independent of stress. References [30,39] predict uniaxial simulation results under this
assumption (the evolutions of stress and structure are independent from each other), where the simplified model
captures well the qualitative behavior.

In this work, we use the discrete element method (DEM) to study granular assemblies made of poly-
disperse frictionless particles and focus on their elastic behavior. By isolating elasticity, we aim to distinguish
the kinematics at the microscale that lead to either macroscopic elasticity or plasticity. We analyze the role
of microstructure, stress state and volume fraction on the evolution of the elastic moduli, with the goal to
characterize them in terms of a unique, limited set of variables. In order to calculate the stiffness tensor, we apply
small strain probes to various equilibrium states along a volume-conserving (undrained) shear deformation
path. In the case of a finite assembly of particles, in simulations, an elastic regime can always be detected,
and the elastic stiffnesses can be measured by means of an actual, very small, strain perturbation [50]. The
purpose is to improve the understanding of elasticity in particle systems and to guide further developments
for new constitutive models. As an example, the relation between moduli and fabric here is used in the
anisotropic constitutive model, as proposed in [48,51], to predict the macroscopic behavior during a more
general deformation path, involving also strain reversal.

This paper is organized as follows: The simulation method and parameters used and the averaging definitions
for scalar and tensorial quantities are given in Sect. 2. The preparation test procedures and the results from
the deviatoric simulation are explained in Sect. 3. Section 4 is devoted to the measurement of elastic moduli
by means of small isotropic and deviatoric perturbations. There we present the evolution of the moduli with
strain and link them to fabric and stress. Finally, in Sect. 5, theoretically, the evolution of the microstructural
anisotropy is related to that of stress and strain, as proposed in Refs. [48,51]. This displays the predictive quality
of the model, calibrated only for isochoric, unidirectional shear, when applied to an independent, cyclic shear
test.
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2 Numerical simulation

The Discrete Element Method (DEM) [2,30,47] helps to study the deformation behavior of particle systems.
At the basis of DEM are laws that relate the interaction force to the overlap (relative deformation) of two
particles. Neglecting tangential forces, if all normal forces fi acting on particle i , from all sources, are known,
the problem is reduced to the integration of Newton’s equations of motion for the translational degrees of
freedom:

d

dt
(mi vi ) = fi + mi g, (1)

with the mass mi of particle i , its position ri , velocity vi (=ṙi ) and the resultant force fi = ∑
c fi

c acting on it
due to contacts with other particles or with the walls, and the acceleration due to gravity, g (which is neglected
in this study). The force on particle i , from particle j , at contact c, has normal and tangential components, but
the latter are disregarded in this study to focus on frictionless packings.

For the sake of simplicity, the linear visco-elastic contact model for the normal component of force is used,

f n = kδ + γ δ̇, (2)

where k is the spring stiffness, γ is the contact viscosity parameter, δ = (
di + d j

)
/2 − (

ri − r j
) · n̂ is the

overlap between two interacting species i and j with diameters di and d j , n̂ = (
ri − r j

)
/
∣
∣
(
ri − r j

)∣
∣ and δ̇

is the relative velocity in the normal direction. In order to reduce dynamical effects and shorten relaxation
times, an artificial viscous background dissipation force fb = −γbvi proportional to the moving velocity vi of
particle i is added, resembling the damping due to a background medium, as e.g., a fluid.

The standard simulation parameters are N = 9,261(=213) particles with average radius 〈r〉 = 1 (mm),
density ρ = 2,000 (kg/m3), elastic stiffness k = 108 (kg/s2), particle damping coefficient γ = 1 (kg/s),
background dissipation γb = 0.1 (kg/s). Note that the polydispersity of the system is quantified by the width
(w = rmax/rmin = 3) of a uniform size distribution [24], where rmax and rmin are the radii of the biggest and
smallest particles, respectively.

The average time scale is determined when two averaged size particles (with ravg = 〈r〉 = 1) with mass

mavg = ρ
(

4πr3
avg/3

)
= 8.377 (µg) interact and is given as tc,avg = π/

√

k/m′
avg − (γ /

(
2m′

avg

)
)2 =

0.6431 (µs), where m′
avg = mavg/2 is the reduced mass, with restitution coefficient eavg = exp

(
−γ tc,avg/

(
2m′

avg

))
= 0.926. The fastest response time scale in the system is determined when two

smallest particle with mass msmall = ρ
(
4πr3

min/3
) = 1.047 (µg) interact, and is given as tc,small =

π/

√
k/m′

small − (γ /
(
2m′

small

)
)2 = 0.2279 (µs), where m′

small = msmall/2 is the reduced mass, with resti-

tution coefficient esmall = exp
(−γ tc,small/

(
2m′

small

)) = 0.804.

2.1 Coordination number and fraction of rattlers

In order to link the macroscopic load carried by the sample with the active microscopic contact network,
all particles that do not contribute to the force network are excluded. Frictionless particles with <4 contacts
are thus “rattlers,” since they cannot be mechanically stable and hence do not contribute to the contact or
force network [24,30,39]. The classical definition of coordination number is C = M/N , where M is the
total numbers of contacts and N = 9,261 is the total number of particles. The corrected coordination number
is: C∗ = M4/N4, where, M4 is the total number of contacts of the N4 particles with at least four contacts.
Moreover, we introduce here the reduced number of contacts M p

4 , where contacts related to rattlers are excluded
twice, as they do not contribute to the stability of both the rattler and the particle in contact with it. Hence,
M p

4 = M4 − M1 − M2 − M3 = M − 2 (M1 + M2 + M3), where M1, M2 and M3 are total numbers of
contacts of particles with only 1, 2 and 3 contacts, respectively. This leads to a modification in the definition
of the corrected coordination number: C∗

p = M p
4 /N4. The fraction of rattlers is φr = (N − N4) /N ; hence,

C = C∗ (1 − φr ). The total volume of particles is
∑N

P=1 VP = (4/3)π N 〈r3〉, where 〈r3〉 is the third moment
of the size distribution [24,39], and the volume fraction is defined as ν = (1/V )

∑N
P=1 VP , where V is the

volume of the periodic system.
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2.2 Macroscopic (tensorial) quantities

Here, we focus on defining averaged tensorial macroscopic quantities—including strain-, stress- and fabric
(structure) tensors—that provide information about the state of the packing and reveal interesting bulk features.

By speaking about the strain-rate tensor Ė, we refer to the external strain that we apply to the sample in a
time interval dt. The isotropic part of the infinitesimal strain tensor εv [24,30,39] is defined as:

δεv = −ε̇vdt = −δεxx + δεyy + δεzz

3
= −1

3
tr(δE) = −1

3
tr(Ė)dt (3)

where εαα = ε̇ααdt with αα = xx, yy and zz are the diagonal components of the tensor in the Cartesian
x − y − z reference system. The trace integral of 3εv is denoted as the volumetric strain εv , the true or
logarithmic strain, i.e., the volume change of the system, relative to the initial reference volume, V0.

On the other hand, from DEM simulations, one can measure the “static” stress in the system [9] as

σσσ = (1/V )
∑

c∈V

lc ⊗ fc, (4)

averaged over all the contacts in the volume V of the dyadic products between the contact force fc and the
branch vector lc, where the contribution of the kinetic fluctuation energy has been neglected [30,47]. The
isotropic component of the stress is the pressure P = tr(σσσ)/3.

In order to characterize the geometry/structure of the static aggregate at microscopic level, we will measure
the fabric tensor, defined as

F = 1

V

∑

P∈V

V P ∑

c∈P
nc ⊗ nc (5)

where V P is the volume of particles P , which lie inside the averaging volume V , and nc is the normal unit
branch vector pointing from center of particle P to contact c [40,47,86]. We want to highlight that a different
convention for the fabric tensor involves only the orientation of contacts as follows [61,69,87]:

Fo = 1

Nc

∑

c∈Nc

nc ⊗ nc (6)

where Nc is the total number of contacts in the system. An approximated relationship between Eqs. (5) and
(6) can be derived as:

Fo ≈ 3F
tr(F)

, (7)

with tr(Fo) = 1. This relation is exactly equal for monodisperse assemblies but largely deviates for assemblies
with high polydispersity (see further discussion in Sect. 3). The difference also becomes more significant when
the jamming volume fraction [52,79] is approached. In the following, when not explicitly stated, we will refer
to Eq. (5), since we combine the effects of volume fraction and number/orientation of contacts, both relevant
quantities when the elastic moduli are considered [24].

In a large volume with a given distribution of particle radii, the isotropic fabric, i.e., the trace of F, is
proportional to the volume fraction ν and the coordination number C , see Refs. [24,30,39], as

Fv = tr(F) = g3νC = g3νC∗ (1 − φr ) , (8)

where C, C∗ and φr have been introduced in previous Sect. 2.1, and g3 ≈ 1.22 for polydispersity w = 3,
being only a weighted factor of order unity of the non-dimensional moments size distribution [24,39,71].

2.3 Isotropic and deviatoric parts

We choose here to describe each symmetric second order tensor Q, in terms of its isotropic part (first invariant)
and the second,

J2 = 1

2

[(
Q D

1

)2 +
(

Q D
2

)2 +
(

Q D
3

)2
]

,
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and third,

J3 = det(QD) = Q D
1 Q D

2 Q D
3 ,

invariants of the deviator, with Q D
1 , Q D

2 and Q D
3 eigenvalues of the deviatoric tensor QD = Q − (tr(Q)/3)I.

We use the following definition (of the Euclidean or Frobenious norm) to quantify with a single scalar the
magnitude of the deviatoric part [39,40] of Q:

Qdev = Fsgn (Q)
√

2J2

= Fsgn (Q)

√
√
√
√

(
Qxx − Qyy

)2 + (
Qyy − Qzz

)2 + (Qzz − Qzz)
2 + 6

(
Q2

xy + Q2
yz + Q2

zx

)

3
, (9)

where Qxx , Qyy and Qzz are its diagonal, Qxy, Qyz and Qzx its off-diagonal components and the deviators
εdev, σdev and Fdev refer to strain E, stressσσσ and fabric F, respectively. Fsgn (Q) is the sign function that relates
the tensorial quantity to be measured, Q, with the reference tensor that describes the (strain- or stress-controlled)
path applied to the sample, H0:

Fsgn (Q) = sgn (H0 : Q) ,

with “:” being the inner product between the two tensors. For a given, complex deformation path, the reference
tensor H0 must be chosen in a convenient way, in order to take into account both the actual loading path and/or
the previous deformation history of the sample. In the special case of an undrained shear test, as introduced
later in Sect. 3, we use as reference the director of the strain-rate H0 = D̂(−Ė) ∝ (−1, 1, 0), where only the
diagonal terms are given (and the normalization can be ignored), see Eq. (10) below, so that Fsgn simplifies to

Fsgn (Q) = sgn
(
Qyy − Qxx

)
,

with x-wall expanding, y-wall compressing and z-wall non-mobile [39]. We want to point out here that,
during a deformation, the response of stress σσσ and fabric F is opposite in sign to applied strain-rate Ė. Unless
mentioned explicitly, we will be using a sign convention for strain (isotropic δεv = −(1/3)tr(δE) and deviatoric
δεdev = −δEdev), such that consistently a positive strain increment leads to a positive stress and fabric response.

Finally we note that in this work we will use k∗ = k/ (2〈r〉) to non-dimensionalize pressure P and deviatoric
stress σdev to give P∗ and σ ∗

dev, respectively, and will be referring to deviatoric stress as shear stress.1

3 Volume-conserving (undrained) biaxial shear test

In this section, we first describe the sample preparation procedure and then the details of the numerical shear
test.

The initial configuration is such that spherical particles are randomly generated, with low volume fraction
and rather large random velocities in a periodic 3D box, such that they have sufficient space and time to
exchange places and to randomize themselves. This granular gas is then compressed isotropically, to a target
volume fraction ν0 = 0.640, sightly below the isotropic jamming volume fraction [30,39,52] νc ≈ 0.658 and
then relaxed to allow the particles to fully dissipate their potential energy [30,39].2 The relaxed state is then
compressed (loading) isotropically from ν0 to a higher volume fraction of ν = 0.82, and decompressed back
(unloading) to ν0 [30,39].

1 It is important to point out that the rattlers are excluded in defining the (corrected) coordination number C∗. However,
dynamic rattler particles with 1 ≤ Mp ≤ 3 contacts are included in the definitions of fabric and stress. We verified that during
shear deformation, the maximum contribution in deviatoric stress due to rattlers is 0.03 %, while in the case of deviatoric fabric
the contribution can be as large as 0.5 %. This is not surprising since only contacting particles contribute to the definitions of both
stress and fabric, and dynamic rattlers have a smaller weight for stress than for fabric, see Eq. (5). Note also that the number of
rattlers decreases with increasing size of the particles [39].

2 Note that the jamming volume fraction is given for a uniform radius distribution for polydispersity w = 3. The results will be
different if the distribution is different, e.g., when uniform surface or volume distributions are used. See Ref. [39] for a detailed
discussion on the evolution of jamming volume fractions with polydispersity for a uniform radius distribution.
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The preparation procedure, as described above, provides many different initial configurations with volume
fractions νi , each one in mechanical equilibrium. Starting from various νi chosen from the unloading branch
[30,39], the samples are then sheared keeping the total volume constant, that is with a strain-rate tensor

Ė = ε̇yy

⎡

⎣
−1 0 0
0 +1 0
0 0 0

⎤

⎦ (10)

where ε̇yy = 2.84 10−5 [s−1] is the strain-rate (compression > 0) amplitude applied to the moving x-
and y-walls, while the third z-wall is stationary. Our shear test, where the total volume is conserved during
deformation, resembles an undrained test typical in geotechnical practice [87]. The chosen deviatoric path is
on the one hand similar to the pure shear situation, and on the other hand allows for simulation of the biaxial
element test [56,66] (with two walls static, while four walls are moving, in contrast to the more difficult
isotropic compression, where all the six walls are moving). Pure shear is here used to identify constant volume
deviatoric loading with principal strain axis keeping the same orientation as the geometry (cuboidal) of the
system for the whole experiment. In this case, there is no rotation (vorticity) of the principal strain (rate)
axis, and no distortion/rotation of the sample due to shear deformation. Different types of volume-conserving
deviatoric deformations can be applied to shear the system, but very similar behavior has been observed [30],
in terms of shear stress.

3.1 Evolution of stress

The evolution of non-dimensional pressure P∗ with deviatoric strain εdev is presented in Fig. 1a during
undrained shear tests for some exemplary volume fraction. For frictionless systems analyzed here, only a
slight variation of the pressure is observed at the beginning of the test, due to the development of anisotropy in
the sample, after which P∗ remains constant.3 Both the (small) initial pressure change and the final saturation
value vary with the vicinity of ν to the jamming volume fraction νc. Interestingly, depending on the volume
fraction, some of the samples show increase in the pressure (dilatancy) with respect to the initial value and
some other decrease (compactancy), as shown in Fig. 1. This supports the idea of a certain threshold value
ν

p
d = 0.79, as shown in Fig. 2a, where the pressure of the system changes behavior, similarly to the switch

between volumetric dilation and contraction visible in triaxial tests.
The evolution of the (non-dimensional) shear stress σ ∗

dev during shear, as function of the deviatoric strain
εdev, is shown in Fig. 1b, for the same simulations as in Fig. 1a. The stress grows with applied strain until an
asymptote (of maximum stress anisotropy) is reached where it remains fairly constant, with slight fluctuations
around the maximum σ ∗

dev [10]. The growth rate and the asymptote of σ ∗
dev, both increase with ν.

3.2 Evolution of fabric

Complementary to stress, in this subsection we study the evolution of the microstructure in the sample during
the volume-conserving shear test. Figure 3a shows that the isotropic fabric Fv behaves in a very similar fashion
as P∗, with a slight increase/decrease at the beginning, followed by saturation stage, whose value increases
continuously with ν. Figure 2b shows that the difference between the initial value of Fv and its saturation
value changes sign when a certain volume fraction, νF

d = 0.755, is reached. Note that νF
d �= ν

p
d , that further

confirms the independent evolution of FFF and σσσ .
From Eq. (8) Fv is proportional to the product of volume fraction ν, that remains unchanged during

deviatoric deformations, and coordination number C , that varies only slightly for sheared frictionless systems
[30]. Note that as C = C∗ (1 − φr ), knowing the (empirical) relations of C∗ and φr with volume fraction, as
presented in Refs. [30,39], we can fully describe the isotropic fabric state. In this study, we assume Fv to stay
constant during the shear test. This assumption will be used later in Sect. 5 for the prediction of a cyclic shear
test. However, the small changes in Fv or P∗ can be associated with a (small) change in the jamming volume
fraction [41].

3 We observe a much more pronounced change in pressure when friction is included in the calculation, in agreement with other
studies, see e.g., [28]. These data are not shown here and are subject of ongoing research.
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mode for five different volume fractions, as given in the inset (color figure online)
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Fig. 2 Difference between the final and initial values in a non-dimensional pressure P∗ and b isotropic fabric Fv for the pure
shear deformation mode for different volume fractions. Red squares represent the change in bulk modulus, as derived in Sect.
4.3. Dashed lines in the plots represent the crossover when these quantities change sign (color figure online)

The evolution of the deviatoric fabric, Fdev, as function of the deviatoric strain is shown in Fig. 3b during
shear for five different volume fractions. It builds up from different random small initial values (due to the
initial anisotropy in the sample that develops during preparation) and reaches different maxima. The deviatoric
fabric builds up faster at lower volume fractions but the maximal values are higher for smaller volume fractions,
qualitatively opposite to the evolution of σ ∗

dev [10]. As mentioned in Sect. 2.2 the validity of Eq. (7), that relates
the two different definitions of fabric, depends on polydispersity. In order to check the relation, in Fig. 4
the evolution of the three eigenvalues of the fabric tensor is plotted, for both definitions, Eqs. (5) and (6),
during the volume-conserving shear test, for three different values of polydispersity w = 1, 2 and 3. For all
polydispersities, the chosen volume fraction ν = 0.685 is close to the jamming points, that slightly vary with
w [39]. The difference between the definitions of fabric becomes higher for higher polydispersity w = 3, as
in Eq. (6) the contribution of each particle is weighted by its surface area (via its number of contacts), whereas
in Eq. (5) it is weighted by the volume. Only for the monodisperse case, the relation is exact, as can be seen
in Fig. 4a. The differences are considerable for w = 2 and w = 3, for both compressive and tensile direction,
while the non-mobile direction is not affected. Note that the difference of the two fabrics will be smaller for
denser systems.
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Fig. 4 Evolution of the eigen-values of the fabric tensors (directions shown in the inset), during shear deformation at volume
fraction ν = 0.685, for the fabric definition defined in Eq. (6) (smaller symbols) and the relation presented in Eq. (7) (large
symbols), for three cases of polydispersity. a w = 1, i.e., monodisperse, b w = 2 and c w = 3 (present work) (color figure online)

4 Elastic moduli

In this section, we focus on the evolution of the elastic properties of the material and neglect the plastic
contribution to the granular behavior that will be superimposed to the present analysis later in Sect. 5. We first
describe the numerical procedure to measure the elastic moduli of the anisotropic aggregate, and later analyze
the data and their relation with stress and fabric.

4.1 Numerical probes

In a general framework, a possible description for the incremental, elastic behavior of an anisotropic material is
[

δP∗
δσ ∗

dev

]

=
[

B A1
A2 Goct

] [
3δεv
δεdev

]

, (11)

where the isotropic and deviatoric components of stress have been isolated and are expressed as functions of
εv and εdev via a non-dimensional stiffness matrix [26] (by multiplying the moduli with k∗, the real stiffnesses
can be extracted). B is the classical bulk modulus, and Goct the octahedral shear modulus. The anisotropy
moduli A1 and A2 provide a cross-coupling between the two parts (isotropic and deviatoric) of stress and
strain increments. Equation (11) provides a partial description for the evolving stress and stiffness of a sheared
material, as it applies to a triaxial-box configuration (with eigen-system coincident with the axes of the box),
where no off-diagonal terms are measured and stress and moduli are assumed to be collinear. Moreover, the
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Fig. 5 Evolution of a non-dimensional shear stress σ ∗
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shear deformation mode, for volume fraction ν = 0.706. The red circle symbols in a, b are the chosen states, which are first
relaxed (blue square symbols in a and b) and then used as initial configurations for the purely isotropic 3δεv and purely deviatoric
δεdev perturbations (color figure online)

increase in stress and stiffness in the out-of-plane direction (z-direction here) due to the non-planar (triaxial)
stress state associated with the plane deformation mode, is not independently accounted for. These are rather
hidden in the expression for deviatoric stress as proposed in Eq. (9) and used in Eq. (11). However, we have
chosen this representation, since advantages are obtained by investigating the elasticity of a granular material
(e.g., soil), not by its resistance to direct stresses expressed by Young’s modulus and Poisson’s ratio, but rather
in terms of (purely volumetric and deviatoric) stress response to volume and shape changes, as described by
the bulk modulus B and the octahedral shell modulus Goct . This aspect will be further addressed in Sect. 5,
where Eq. (11) will be included in the theoretical model.

To study the evolution of the effective moduli during shear, we choose different initial states (forty) as
shown in Fig. 5, and apply sufficient relaxation, so that the granular assemblies dissipate the kinetic energy
accumulated during the original shearing path. When the states along the shear path are relaxed, a much
higher change is visible in σ ∗

dev rather than in Fdev, see Fig. 5. This shows that the contact network remains
almost intact and Fdev does not change; on the other hand, the average particle overlap is more sensitive to
the relaxation stage and decreases (in steady state), leading to a finite drop in σ ∗

dev. Then we perform a small
strain perturbation to these relaxed anisotropic states, i.e., we probe the samples, and measure the incremental
stress response [40,50]. Finally, the elastic moduli are calculated as the ratio between the measured increment
in stress and the applied strain. We obtain all the different moduli in Eq. (11), by applying an incremental pure
volumetric or pure deviatoric strain and measuring the incremental volumetric or shear stress response:

B = δP∗

3δεv

∣
∣
∣
∣
δεdev=0

, A1 = δP∗

δεdev

∣
∣
∣
∣
δεv=0

,

A2 = δσ ∗
dev

3δεv

∣
∣
∣
∣
δεdev=0

, Goct = δσ ∗
dev

δεdev

∣
∣
∣
∣
δεv=0

. (12)

The system is allowed to relax again after the incremental strain is applied, that is both the stress and the
change in stress are measured after relaxation [50,52]. Since the numerical probe experiments are carried out
with zero contact friction, we are measuring the resistance of the frictionless material [40], where only normal
forces are involved. The first big question concerns the amplitude of the applied perturbation to get the elastic
response [6,21,72].
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4.2 How small is small?

In this section, we discuss the amplitude of the perturbations applied to measure the elastic stress response of
the granular material. Also, we will discuss the results for larger amplitudes and the threshold between elastic
and plastic regimes.

4.2.1 Effect of isotropic perturbations 3δεv

Figure 6 (column 1 and 2) shows the changes in non-dimensional pressure δP∗, non-dimensional shear stress
δσ ∗

dev, isotropic fabric δFv and deviatoric fabric δFdev for different amplitudes of the isotropic perturbation
3δεv, applied to two relaxed states that have been sheared until εdev = 0.0065 (nearly isotropic configuration:
column 1) and εdev = 0.31 (steady state configuration: column 2), respectively. The data correspond to the
shear test with ν = 0.706. The linear elastic response is also plotted (red solid curve) in the whole strain range,
as derived from the incremental behavior at very small strain, to give an idea of the deviation from elasticity
when strain increases.

δP∗ initially increases linearly and smoothly with 3δεv, in agreement with the prediction of linear elasticity.
Also the difference between the two initial states (near isotropic and steady state as shown in Fig. 6a, b,
respectively) is minimal, meaning that the bulk modulus B (slope of δP∗ with 3δεv in the elastic regime) is
almost constant. This is not surprising, as we expect B to be dependent on isotropic quantities that stay mostly
unchanged during the shear deformation, as discussed in Sect. 4.3. δσ ∗

dev behaves similar as δP∗ for small
strain, but shows several sharp drops for large strain. These correspond to sudden changes in the coordination
number δC∗ (see Fig. 7a, b), due to rearrangements in the system during the probe. For the nearly isotropic
state (Fig. 6e), the ratio of δσ ∗

dev with 3δεv in the linear elasticity regime, i.e., A2, is small when compared with
the steady state (Fig. 6f). This clearly tells that A2 evolves during the shear deformation for a given volume
fraction, and must be linked with deviatoric quantities.

δFv increases with 3δεv, with more fluctuations compared with δP∗, for both states considered here,
εdev = 0.0065 (nearly isotropic state Fig. 6i) and εdev = 0.31 (steady state, Fig. 6j). Moreover, the prediction
using Eq. (8) for Fv matches the dataset very well. Fdev does not change (δFdev = 0) with increasing 3δεv,
until the first rearrangement in the structure occurs (see Fig. 7c, d). After this δFdev starts to decrease with
increasing amplitude 3δεv, faster in the steady state (Fig. 6m) than in the near isotropic state, see Fig. 6n.
We note here that, when a non-incremental volumetric strain (3δεv > 10−4) is applied, the system moves
from a volume-conserving to a new non-volume-conserving deformation path. As this system is already
anisotropic, this leads to a decrease (δFdev < 0) in deviatoric fabric Fdev, opposite to the increase (δσdev > 0)
in deviatoric stress, see Fig. 6e, f, higher in the steady state (Fig. 6n) than in the nearly isotropic state (Fig. 6m).
The last observation suggests that the distance between the volume-conserving and non-volume-conserving
configurations increases with εdev.

Hence, during isotropic compression (increasing 3δεv) of a pre-sheared (anisotropic) state, both the pressure
P∗ and shear stress σ ∗

dev increase, with pressure increasing much faster leading to a decrease in deviatoric stress
ratio sdev = σ ∗

dev/P∗. The deviatoric fabric Fdev also decreases with isotropic compression of a pre-sheared
state, and the decrease is initially faster than the exponential decay of Fdev (see Sect. 5 below) with volume
fraction ν, as seen in Fig. 6n. This decrease in Fdev becomes slower for large strain, as also seen in Fig. 6m.
These observations are consistent with the findings of Imole et al. [30], where the authors noticed a decreasing
steady state deviatoric fabric and deviatoric stress ratio with increasing volume fraction, or εv.

4.2.2 Effect of deviatoric perturbations δεdev

Figure 6 (column 3 and 4) shows the changes in the same quantities as before for different amplitudes of the
deviatoric perturbation δεdev, applied to a relaxed state with volume fraction ν = 0.706 that has been sheared
until εdev = 0.0065 (nearly isotropic configuration: column 3) and εdev = 0.31 (steady state configuration:
column 4).

δP∗ increases linearly with δεdev (the slope in the elastic regime is A1), with A1 much smaller for the
nearly isotropic state (Fig. 6c) than for the steady state (Fig. 6d). This shows that A1 evolves during the
shear deformations, like A2, for a given volume fraction, and must be linked with the deviatoric state of the
system. Moreover, after large deformation, both states show drops in δP∗, which can be linked to the particle
rearrangements (see Fig. 7c, d). A nonlinear, irregular behavior shows up for δεdev > 10−4, with δP∗ positive
in case of loose sample (present sample) and negative for dense samples (data not shown), in agreement with
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Fig. 6 (Rows) Evolution of the incremental non-dimensional pressure δP∗, non-dimensional shear stress δσ ∗
dev, isotropic fabric

δFv and deviatoric fabric δFdev versus strain amplitude. Columns 1 and 2 represent purely isotropic while columns 3 and 4
represent deviatoric perturbation experiments. The perturbation is applied to the state corresponding to εdev = 0.0065 (nearly
isotropic configuration: columns 1 and 3) and εdev = 0.31 (steady state configuration: columns 2 and 4) of the main deviatoric
experiment with volume fraction ν = 0.706. Note that the x axis is log-scale, with inset plots in linear scale. The red line passing
through the dataset in a–j represents a linear fit in the elastic regime for 3δεv; δεdev < 10−4. The analytical predictions for the
elastic range from our results Sect. 4.3 in Eqs. (13)–(17) are plotted as green line in a–h. The green line in i and j represents
Fv = g3νC calculated using Eq. (8), when subtracted from its initial value. The dashed horizontal line in k–p represents zero.
The green line in m and n represents the evolution of change in deviatoric fabric δFdev in critical state using parameters from
Table 3 of Ref. [30], with the assumption that the new state after volumetric deformation is also in critical state. The green line
in o and p represents Eq. (18) from Ref. [30] when subtracted from its initial value F0

dev = 0.03 for o and F0
dev = 0.113 for p,

with the growth rate βF = 39 and Fmax
dev = 0.12 (color figure online)

the observations in Fig. 2a. δσ ∗
dev also increases linearly with δεdev, with Goct (slope of the line) slightly higher

for the near isotropic state (Fig. 6g) than for the steady state (Fig. 6h). Again, similar to δP∗, δσ ∗
dev shows drops

after large deformations, which can be linked to the particle rearrangements (see Fig. 7c, d). In the steady state,
the incremental stresses (δP∗ and δσ ∗

dev) increase linearly for very small strain, as the relaxed configuration,
starting point for the probes, has lower stress than the main deviatoric path (see Fig. 5a) and the system tends
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Fig. 7 Evolution of the incremental coordination number δC∗ = δ (M4/N4) (black circle curve) and the modified coordination
number δC∗

p = δ
(
M p

4 /N4
)

(red asterisk curve), defined in Sect. 2, versus strain amplitude during purely a, b isotropic and c,
d deviatoric perturbation experiments (corresponding plots as in Fig. 6). The perturbation is applied to the state corresponding
to εdev = 0.0065 [nearly isotropic configuration: a and c] and εdev = 0.31 [steady state configuration: b and d] of the main
deviatoric experiment with volume fraction ν = 0.706. Note that the x axis is on log-scale, with inset plots in linear scale (color
figure online)

to regain the “missed” stress, when the shear restarts. After the first elastic response, δP∗ and δσ ∗
dev fluctuate

around zero for larger amplitudes (Fig. 6d, h), as no change in stress is expected with increasing deviatoric
strain in the steady state.

δFv stays mostly zero when small δεdev is applied for both near isotropic and steady state configurations
(Fig. 6k, l). With increasing strain amplitude, δFv increases in the case of a loose sample close to the isotropic
state (Fig. 6k), and decreases for denser samples (data not shown), in agreement with the behavior in Fig. 2b. In
Fig. 6o, δFdev for the nearly isotropic state stays zero for δεdev < 10−4, when no rearrangements happen and
the behavior is elastic, while it reaches a positive finite value for larger amplitude (that coincides with the slope
of the curve in Fig. 3b). This finite value drops to zero in the steady state, where no variation of deviatoric fabric
is expected with further applied deviatoric strain (see Fig. 6p). When compared with the model predictions in
Ref. [30], the simulation data for Fdev well match with the theoretical line, where Fdev increases due to shear
for the near isotropic state, and does not change for the steady state simulation.

4.2.3 Discussion and comparison

Since we are interested in measuring the pure elastic response of the material, we take care that no rearrange-
ments happen in the system during the numerical probe, that is, 3δεv and δεdev are applied only up to 10−4

(with very slow wall movement ≈ 10−5[s−1], i.e., smaller than for the main large shear strain preparation
experiment). Looking at Fig. 6, we note that much bigger drops appear in the deviatoric response when the
isotropic perturbation is applied. Vice versa, the fluctuations/drops are much larger in pressure rather than in
shear stress, when we deal with deviatoric perturbations. It is worthwhile to mention here that we have tested
our method by applying strain perturbations in opposite directions i.e., 3δεv and −3δεv, δεdev and −δεdev. This
does not lead to any difference in the elastic response, as long as we stay in the limit of elastic perturbations.

We test the rearrangements argument in Fig. 8, by plotting the calculated bulk modulus B and octahedral
shear modulus Goct against the amplitude of the applied isotropic 3δεv and deviatoric δεdev strain, respectively,
for states at εdev = 0.0065 and 0.31 (nearly isotropic and steady state configurations, respectively) of the main
deviatoric experiment. Both B and Goct stay practically constant for small amplitudes, and we can assume the
regime to be linear elastic [10]. At 3δεv � 10−4, the first change in the number of contacts happens (Fig. 7a, b),
and B starts to increase non-linearly. Similarly, when εdev � 10−4, the first change in the number of contacts
happens (Fig. 7c, d), and Goct starts to decay. It is interesting to notice that for both B and Goct the elastic
regime shrinks when the main deviatoric strain εdev increases (Fig. 8) and, also, when the volume fraction
reduces, going toward the jamming volume fraction (data not shown). A fabric modulus may be plotted as
δFdev/δεdev that, due to the finite size of the system, would be identically zero, until the first change of structure
(fabric) occurs (see Fig. 6).

We further check the elasticity of the probe by reversing the incremental strain. We plot the stress responses
to volumetric/deviatoric strain in Fig. 9 and compare loading and unloading probes for different volume frac-
tions (ν = 0.706 and 0.812) and amplitudes. Looking at Figs. 6, 7 and 9 together, three regimes seem to appear.
The first one at very small strain (on the order of 10−5) is characterized by no opening and closing of contacts
and shows perfect reversibility of the data, i.e., elasticity, in Fig. 9a–d. This is related with the finite size of the
system. The second regime in Fig. 9(e–h) shows some weakly irreversible behavior, but only for the smaller
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Fig. 9 Evolution of the incremental non-dimensional pressure P∗, non-dimensional shear stress σ ∗
dev during small (a–d), medium

(e–h), and large (i–l) perturbations in the loading (symbols) and then unloading (solid lines) direction. Red plus symbols represents
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volume fraction and a mixed perturbation mode, see the sample at ν = 0.706 in Fig. 9f; we associate this
behavior to minor contact changes, as visible in Figs. 6 and 7, but no large scale rearrangements occur. Finally,
in the third regime, for perturbations two orders of magnitude higher (on the order of 10−3), a residual strain
after reversal shows up for both volume fractions and all types of perturbations, see Fig. 9i–l, proving also that
plasticity is much more pronounced in the deviatoric modes than in isotropic ones. We claim that small drops
are related to local (weak, almost reversible) re-structuring, while in the last case, the whole system (or a big
portion of it) is involved in the collapse of the structure, with a more pronounced effect for samples close to
the jamming volume fraction [35,49].

For granular materials, the strain cannot be split in elastic and plastic contributions by “trivially” referring
to the residual deformation like in classical solids: as soon as we are out of the elastic range, rearrangements
happen during loading and (even though less probably) during unloading, and most likely no original position
is recovered for any particle. Finally, we note that the results shown here are valid for finite-size systems; for
much larger (real) samples of much smaller particles, we expect the first elastic regime to reduce to much
smaller strains. The transition between the second and third regime is an issue for further research [68].

4.3 Evolution of the moduli

Using five packings at different νi , we next determine which variables affect the incremental response of
the aggregates at different deviatoric strains along the main path. In order to understand the role of the
microstructure, i.e., the fabric tensor F, the volumetric and deviatoric components, Fv and Fdev, are considered.
We postulate that the incremental response of the granular material can be uniquely predicted, once its fabric
state (along with the stress state) is known, irrespective of the path that the system experienced to reach that
state. In this sense the fabric tensor can be referred to as a state variable.

4.3.1 Bulk modulus B

In Fig. 10a, we plot the incremental non-dimensional pressure δP∗ against the amplitude of the applied isotropic
perturbation 3δεv for one volume fraction, ν = 0.706, and various initial anisotropic configurations. The slope
of each line is the bulk modulus of that state. It practically remains unchanged for different states and suggests
that B is constant for a given volume fraction.

In Fig. 10b, we plot the variation of the bulk modulus B with the isotropic fabric Fv for packings with
different volume fractions νi . B increases systematically when the five different reference configurations are
compared, and it is related to the value of Fv constant at a given νi [24,40,70]. As expected B is a purely
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volumetric quantity and varies with changes in the isotropic contact network. The inset in Fig. 10b shows that the
bulk modulus remains almost constant with applied shear during a single deviatoric experiment [40], behaving
qualitatively similar to pressure P∗ and isotropic fabric Fv, see Figs. 1a and 3a, respectively. That is, the
contact orientation anisotropy, Fdev, which changes during the main deviatoric deformation path (see Fig. 3b)
does not affect it. In agreement with observations on the volumetric fabric in Sect. 3.2, also B shows a slight
increase/decrease in the first part of the deviatoric path, more pronounced for loose samples, as clearly seen in
Fig. 2b. The trend of B slightly deviates from Fv in the low strain regime, while the dependence is well captured
in the steady state, after large strain. The relation between bulk modulus and fabric was given in Ref. [24] as:

B = δP∗

3δεv

∣
∣
∣
∣
δεdev=0

= p0 Fv

g3νc

[

1 − 2γp (−εv) + (−εv)
(
1 − γp (−εv)

) ∂lnFv

∂ (−εv)

]

, (13)

where p0, γp and the jamming volume fraction νc are fit parameters presented in Table 1.4 g3 ≈ 1.22 is
dependent on the particle size distribution as presented in Refs. [24,30,39], see Sect. 2. For a given volume
fraction, the above relation only requires the knowledge of the isotropic fabric Fv = g3νC = g3νC∗ (1 − φr ),
where the empirical relations for C∗(ν) and φr (ν) are taken from Refs. [30,39], see Sect. 2. The numerical
data show good agreement with the theoretical prediction presented in [24] and reported in Fig. 10b. The
minimum Fv is obtained at the jamming volume fraction, with νc = 0.658, C∗ = 6, and φr = φc = 0.13,
leading to Fmin

v ≈ 4.2. At the jamming transition, we can extrapolate a finite value of the bulk modulus
Bmin = 0.22, while it suddenly drops to zero below νc [14,31,55,62–65,85]. The discontinuity of B is related
to the discontinuity in Fv, that jumps from zero to a finite value at νc due to equilibrium requirements.

4.3.2 Anisotropy moduli A1 and A2

In Fig. 11a, we plot the non-dimensional pressure increment δP∗ against the strain amplitude, when the material
is subjected to small deviatoric perturbations δεdev, to measure the first anisotropy modulus A1 as defined in
Eq. (12), in given anisotropic configurations, as in Fig. 10a. Since the material is in an anisotropic state, an
increment in deviatoric strain leads to a change in volumetric stress, along with shear stress. The slope of the
curves, A1, increases with the previous shear strain the system has experienced, from small values in the initial
isotropic configuration, to an asymptotic limit.

We are interested in the ratio A1/B. In this ratio, the dependence of isotropic fabric Fv cancels out, all
that remains is a pure dependence on Fdev. In Fig. 11b, we plot the variation of A1/B, with Fdev for packings
with different volume fractions νi as shown in the inset. Besides the fluctuations, the data collapse on a unique
curve irrespective of volume fraction and pressure, that is, once a state has been achieved, a measurement
of the overall anisotropy modulus is associated with a unique Fdev. An increasing trend of A1/B with the
deviatoric fabric shows up. As the deviatoric fabric decreases with volume fraction (see Fig. 3b), this leads
to lower values of the scaled anisotropy modulus for denser systems. In conclusion, we have a linear relation
between the first anisotropy modulus A1 and fabric:

A1 = δP∗

δεdev

∣
∣
∣
∣
δεv=0

= aI B Fdev, (14)

where B is the bulk modulus, Fdev is the deviatoric part of fabric, and aI ≈ 1.0 is a fit parameter presented in
Table 1.

In Fig. 12a, we plot the stress response of the material δσ ∗
dev to isotropic perturbation 3δεv, for the same

anisotropic initial configurations as in Fig. 10a, to measure the second anisotropy modulus A2 as defined in
Eq. (12). Similarly to A1, the slope of the elastic curves, i.e., A2, increases with the previous shear strain the
system has felt, starting form zero until an asymptotic limit is reached. In Fig. 12b, we plot the variation of
A2/B, with Fdev for different volume fractions νi as shown in the inset. Data show a very similar trend as in
Fig. 11b, and besides the fluctuations, a collapse of data is observed.5 Again we can relate A2 to deviatoric
fabric as

4 Note that νc for the same particulate system was reported as 0.66 for isotropic deformation in Ref. [24], as 0.6646 for isotropic
and 0.658 for shear deformation in Ref. [30]. We use a similar νc = 0.658 here, which, however, is dependent on history of the
sample and on the deformation mode. The small deviations of B from Eq. (13) can be attributed to a (small) variation of νc;
however, this is beyond the focus of this paper.

5 A large data scatter is present in both figures (Figs. 11b, 12b), which increases for increasing deviatoric fabric Fdev. This is
possibly due to other factors that may contribute to the evolution of the anisotropy moduli that are not considered in the present
work.



2334 N. Kumar et al.

 0

 1

 2

 0  1  2  3  4  5  6

δ P
*

δεdev

εdev =  0.0065
εdev =  0.0129
εdev =  0.0227
εdev =  0.0355
εdev =  0.126
εdev =  0.139
εdev =  0.191

X10-6

X10-7

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

A
1/

B

Fdev

0.812
0.800
0.751
0.706
0.685
aIFdev

(a) (b)

Fig. 11 a Evolution of the incremental change in non-dimensional pressure δP∗ during purely deviatoric perturbations δεdev
for different states for volume fraction ν = 0.706 along the main path as shown in the inset. The arrow indicates the direction
of increasing strain states during main deviatoric experiments. b Evolution of the ratio of first anisotropy modulus with bulk
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through the data represents Eq. (15) divided by B (color figure online)

A2 = δσ ∗
dev

3δεv

∣
∣
∣
∣
δεdev=0

= aII B Fdev. (15)

The equality between the two fitting constants aI ≈ aII ≈ 1 (see Table 1), establishes the symmetry of the
stiffness matrix in Eq. (11).

Equations (14) and (15) provide an interesting, novel way to back-calculate the deviatoric structure in a
granular sample via Fdev = A/B, where A and B can be inferred from wave propagation experiments, while
the direct measurement of fabric is still an open issue [29,34,36,74].
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Table 1 Summary of fit parameters extracted from the small perturbation results in Eqs. (13), (14), (15) and (17)

Modulus Parameters

Bulk modulus B p0 = 0.0425, γp ≈ 0.2, νc = 0.658
First anisotropy modulus A1 aI = 1 ± 0.01
Second anisotropy modulus A2 aII = 1 ± 0.02
Octahedral shear modulus Goct gI = 130 ± 3, Fα

v ≈ 1.9

4.3.3 Octahedral shear modulus Goct

In Fig. 13a, we plot the shear stress response δσ ∗
dev of the material when the initial configurations in Fig. 10a

are subjected to small deviatoric perturbations δεdev. The octahedral shear modulus Goct is then measured,
as defined in Eq. (12). The slope of the curves for different initial configurations slightly decreases with
the deviatoric state of the system, and saturates for high deformation εdev, when the steady state is reached.
Figure 13b shows the variation of Goct against shear strain εdev. Goct starts from a finite value in the initial
configuration, related to the isotropic contact network, and slightly decreases with increasing strain, with
different rates for different volume fractions. The behavior of Goct differs from that observed for the bulk
modulus in the inset of Fig. 10b: the shear resistance consistently decreases with shear strain, and no transition
between initial decrease/increase is observed, meaning that a factor other than Fv influences the change of Goct

during the deviatoric path. Similarly to what done for A1 and A2, we look at the ratio of the shear modulus
with the bulk modulus Goct/B plotted against the isotropic fabric Fv in Fig. 13c. The ratio increases with
increasing Fv, with higher values in the initial state than in the steady state (data are averaged over shear strain
εdev ≤ 0.0065 to get the initial value and in the steady state to get the final one). The isotropic ratio

(
Goct/B

)
ini

increases with Fv, following the empirical relation:

(
Goct/B

)
ini = (

Goct/B
)

max

[

1 − exp

(
Fv − Fmin

v

Fα
v

)]

(16)

where
(
Goct/B

)
max ∼ 0.51 represents the maximum value of the ratio Goct/B for large Fv (or volume fraction),

Fmin
v ∼ 4.2 (see Sect. 4.3.1) and Fα

v ∼ 1.9 are the volumetric fabric and the rate of growth of (Goct/B)ini at
jamming transition. This is in agreement with previous studies that find an upper limit equal 0.5 for the ratio
between the shear and bulk moduli [18,38,50,73]. In the limit of high Fv, the granular assembly becomes
highly coordinated and practically follows the affine approximation that predicts a constant value for the ratio
Goct/B [78]. Here, a qualitatively similar behavior is observed for the values in the steady state, approaching
a saturation ratio lower than the isotropic one.

Next, in Fig. 13d, we subtract the initial value
(
Goct/B

)
ini from Goct/B and assume that Fv does not

change during the deviatoric deformation. Interestingly, we find that in this case the deviatoric microstructure
alone is not able to capture the variation of the modulus along the shear path, but both stress σσσ and fabric F
seem to influence the incremental shear response, in agreement with findings in [87]. We relate the decrease
in Goct to the deviatoric components of stress and fabric via:

Goct = δσ ∗
dev

δεdev

∣
∣
∣
∣
δεv=0

= B

[(
Goct

B

)

ini
− gIσ

∗
dev Fdev

]

(17)

where σ ∗
dev is the non-dimensional shear stress, Fdev is the deviatoric fabric, and gI ≈ 130 is a fit parameter

reported in Table 1. Two contributions of the fabric to the shear stiffness can be recognized—isotropic and
deviatoric. The overall contribution is multiplicative proportional to B, related to the isotropic contact network
and changing very little with deviatoric strain. In the bracket, the first term gives the resistance of the material in
the initial isotropic configuration, whereas the second part only depends on the deviatoric (state) variables and
characterizes the evolution of the shear modulus with deviatoric strain. Given the initial isotropic configuration,
the corresponding Goct is known [16,50,78]; on the other hand, the anisotropic network of such a configuration
uniquely defines the reduction in the shear stiffness. The product of deviatoric stress and fabric σ ∗

dev Fdev as
proposed in [77,87] is able to capture the evolution of the ratio of the elastic moduli along the whole undrained



2336 N. Kumar et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6

δσ
* de

v

δεdev

εdev =  0.0065
εdev =  0.0129
εdev =  0.0227
εdev =  0.0355
εdev =  0.126
εdev =  0.139
εdev =  0.191

X10-6

X10-7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

G
oc

t

εdev

0.812
0.800
0.751
0.706
0.685

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5.5  6  6.5  7  7.5  8  8.5  9  9.5

G
oc

t /B

Fv

0.812
0.800
0.751
0.706
0.685
Initial

Critical
Eq. (16)

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0  0.0002  0.0004  0.0006  0.0008

G
oc

t /B
  -

  (
G

oc
t /B

) in
i

σ*devFdev

0.812
0.800
0.751
0.706
0.685

-gIσ*devFdev

(a) (b)

(c) (d)

Fig. 13 a Evolution of the incremental change in shear stress δσ ∗
dev versus strain amplitude during purely deviatoric perturbations

δεdev for different states, with volume fraction ν = 0.706, along the main path as shown in the inset. b Evolution of octahedral shear
modulus Goct along the main deviatoric path εdev for five different volume fractions as shown in the inset. The corresponding lines
passing through the data represent Eq. (17). c Evolution of ratio of octahedral shear modulus and bulk modulus, i.e., Goct/B with
isotropic fabric Fv, together with the averaged values at the initial (near isotropic state averaged over shear strain εdev ≤ 0.0065)
and the steady state (averaged dataset in the steady state), as given in the legend. Note that the difference between initial and steady
state increases with denser systems. The solid orange line passing through the isotropic dataset represents Eq. (16). d Evolution
of the ratio of octahedral shear modulus and bulk modulus when its initial value, i.e., Goct/B − (

Goct/B
)

ini is subtracted, plotted
using Eq. (17), for five different volume fractions as shown in the inset (color figure online)

path, as seen in Fig. 13d.6 No other relation with volumetric quantities needs to be considered, as the evolution
of σ ∗

dev Fdev depends on the volume fraction of the sample νi .
Note that when Goct/B is plotted against Fv in Fig. 13c, a deviation from the fitting law is observed for each

volume fraction, showing that extra correction terms might be needed for a more accurate description. This is
neglected in this preliminary work. It is interesting to point out that the isotropic fabric has different effects
in case of the anisotropy moduli A1, A2 and Goct, as in the former two cases Fv, through B, is multiplied to
Fdev and contributes to the growth of the moduli from zero to the asymptotic values, while in the latter case
Fv defines mostly the initial values of Goct via the bulk modulus, but does not affect the further decrease.

6 Such a split between isotropic and deviatoric fabric influence applies to this specific deformation path, where the volume is
conserved. Additional terms may enter when non-volume-conserving deformation paths are considered. A very similar behavior
is observed when the definition in Eq. (6) is employed for the deviatoric fabric.
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5 Prediction of undrained cyclic shear test

In this section, the constitutive model is presented, involving the elastic moduli measured and calibrated in
Sect. 4, and the plastic response of the material under large strain. The model is then used to predict the material
response under cyclic shear, involving reversal.

5.1 Calibration: constitutive model with anisotropy

We introduce here a constitutive model as proposed in Refs. [30,37,39,48,51], extended to three dimensions,
that takes into account the evolution of fabric, independently of stress:

δP∗ = B3δεv + ASσ δεdev,

δσ ∗
dev = A3δεv + Goct Sσ δεdev,

δFdev = βF sign (δεdev) Fmax
dev SFδεdev.

(18)

In its simple, reduced form, the model involves only three moduli B, A and Goct, defined in the previous section
in Eqs. (13)–(17). Due to A, the model provides a cross-coupling between the two types of stress and strain in
the model, namely the isotropic stress P∗ and shear stress σ ∗

dev reacting to both isotropic (εv) and deviatoric
(εdev) strains. Fdev evolves differently from stress, as the rate of change with deviatoric strain can be (and
in many cases is) different from the respective rate for the shear stress evolution. Note that additional terms
(cross-coupling of fabric with strain) might be needed for the incremental evolution of δFdev in Eq. (18), due to
the observations from Fig. 6m, k, where Fdev and Fv change also with εv and εdev, respectively. However, both
cross-terms appear to be mostly activated in the highly anisotropic state, with values of the out-of-plane fabric
considerably smaller than out-of-plane stress—but this has to be confirmed by other deformation paths also,
i.e., we claim that some features are related to the specific deformation path proposed here. If a dependence
between stiffness and fabric similar to that proposed in Eqs. (14) and (15) is assumed, previous arguments also
lead to the conclusion that the out-of-plane stiffness terms developing during plane strain and neglected in
Eq. (11) must be small compared with B, A and G. For the sake of simplicity, both evolution of cross-coupling
fabric terms and out-of-plane stiffness are neglected in the present work, and postponed to future investigations,
for the description of arbitrary deformation paths. The use of non-frictional particles is another possible reason
for the simplest model to work astonishingly well—so the general model is expected to show all contributions
for arbitrary deformation, in the presence of friction.

Sσ = S/SI
σ , with S = (1− sdev/smax

dev ) is a measure of the stress isotropy with normalized shear stress ratio
sdev = σ ∗

dev/P∗, and SI
σ is the initial stress isotropy at the start of a new deformation direction and/or after

relaxation. 1 − Sσ is the measure for the probability of plastic events. Similarly, SF = (1 − Fdev/Fmax
dev )/SI

F
is the fabric isotropy, and SI

F is the initial fabric isotropy at the start of a new deformation direction and/or
after relaxation. smax

dev and Fmax
dev represent the maximum (saturation) values of normalized shear stress ratio

sdev and deviatoric fabric Fdev, respectively, and βF is the rate of change in Fdev at smaller strains (as shown in
Fig. 3b).

It is worthwhile to point out that the definitions of Sσ and SF are different from those used in Refs. [48,51],
as both Sσ and SF are now scaled by the initial reference value and can take values between 0 and 1. Due to
Sσ and SF , the incremental response of the material is purely elastic, after relaxation or at strain reversal, with
the elastic moduli evolving, as given by Eqs. (13)–(17), as functions of the momentary stress and structure
states. At reversal, the probability for plastic deformation drops to zero, and plastic events—as related to the
approach to steady state—only occur after relatively large strain, that is, the reversal stiffness is not affected.
Due to Sσ and SF , the incremental response of the material in the large strain steady state (S = 0) becomes
elastic (S = 1), just when the strain is reverted, or after relaxation (which is allowed before the probes). Due
to the dependence of the elastic moduli on the stress/fabric state, the model involves nonlinear elasticity in
its present form (without contact nonlinearities), while plasticity due to rearrangements is entirely associated
with Sσ . On the other hand, the equation that describes the evolution of fabric is “purely plastic,” as there is
no change in fabric (δFv = 0), in the elastic regime, when no contact opening/closing and no multi-particle
rearrangement happen.7 Thus, the rate βF is associated with changes of structure with deviatoric (shear) strain
amplitude (not rate); changes are becoming more and more probable when approaching the steady state.

7 We want to point out here the difference between the nonlinear elasticity built up along the main deviatoric path and the
incremental elasticity, related to the small perturbations. Let’s select two states A-B along the deviatoric path as indicated by
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Fig. 14 Evolution of a pressure P∗, b deviatoric (shear) stress σ ∗
dev, c normalized shear stress sdev, and d deviatoric fabric Fdev

with shear strain εdev during cyclic shear at constant volume ν = 0.711, starting from an initial isotropic configuration. The
values of smax

dev , Fmax
dev and βF for ν = 0.711 are 0.167, 0.124 and 40.04, respectively, taken directly from the relations proposed in

Refs. [30,39]. The red circle data points are the DEM simulation data over which the calibration of moduli was done, while the
green asterisk data points represent unloading (reversal) and re-loading. The solid line is the prediction of the DEM observations
using Eq. (18) (color figure online)

Now, we can predict an independent experiment, by using Eq. (18), and the relations between the three
moduli B, A and Goct with microscopic state variables given by Eqs. (13)–(17) with the numerical scaling
factors from Table 1 (starting from B, we express the other moduli using their ratio with B). Moreover,
three other parameters smax

dev , Fmax
dev and βF are needed to fully solve the coupled Eq. (18). The dependence of

smax
dev , Fmax

dev and βF on volume fraction ν is well described by the exponential decay relation proposed in Refs.
[30,39], where constant values, as given in Fig. 14 are used, as the volume is conserved during the cyclic shear
test, as discussed next.

5.2 Prediction: (undrained) cyclic shear test

We choose an initial isotropic configuration, with volume fraction ν = 0.711 and apply deviatoric (volume
conserving) shear for one cycle: loading, unloading and final re-loading, to recover the initial box configuration.

Footnote 7 continued
points in Fig. 5, the incremental measured elastic response (moduli) is different between states A and B as it depends on stress
and fabric, that is, the stiffness matrix in Eq. (11), varies non-linearly with εdev. On the other hand, when the incremental strain
δεdev is applied to each state (e.g., A or B), the incremental response is linearly elastic (by definition of incremental) and becomes
plastic for high δεdev, when rearrangements happen and the moduli in that given state go from elastic to plastic.
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Figure 14 shows the evolution of pressure P∗, shear stress σ ∗
dev, shear stress ratio sdev and deviatoric fabric Fdev

with deviatoric shear strain εdev for one cycle, compared with the prediction using Eq. (18). Since the initial
configuration is isotropic, the shear stress σ ∗

dev and Fdev start from zero and approach saturation values (with
fluctuations) at large strains. During reversal, both drop from their respective saturation value and decrease
with unloading strain, crossing their zero values at different strain levels, and finally reach their steady state
with negative signs. This supports the need of independent descriptions for the evolution of stress and fabric.
Finally, re-loading is applied to reach the initial box configuration.

The qualitative behavior of pressure P∗ is similar in simulations and model, going from a finite initial value
to saturation with much less pronounced variations, since the deformation path is volume conserving. It is also
interesting that the final state after the complete cycle, which corresponds to the initial box configuration, is
highly anisotropic (non-zero stress σ ∗

dev and deviatoric fabric Fdev).
Both, the shear stress σ ∗

dev and deviatoric fabric Fdev, as well as their responses during strain reversal are
well predicted by the model. P∗ increases during loading εdev by ∼ 9% and saturates at large strains. After
reversal, P∗ drops because of opening and release of contacts and then increases again with unloading strain.
Although P∗ is not quantitatively predicted by Eq. (18), the qualitative behavior is captured by the model,
which requires a correction as proposed by Krijgsman and Luding [37]. The concept of a history-dependent
jamming point, introduced by Kumar and Luding [41], is capable of capturing the behavior of P∗ quantitatively;
however, this goes beyond the scope of this study.

Equations (18) are able to describe the volumetric/deviatoric behavior of a granular assembly, in terms of
stress and fabric. Once the initial state and the deformation path are defined, the evolution of isotropic fabric
can be determined (using the coordination number and the fraction of rattlers) along the deformation path. The
knowledge of isotropic and deviatoric fabric and the incremental relations in Eq. (18) allow for the definitions
of the moduli at each incremental step. Given also the probabilities for the plastic events (1 − Sσ and 1 − SF ),
the coupled system can be solved. That is, the characterization of the initial state is the information needed to
fully describe the behavior of the material along a general deformation path, defined in terms of strain, since
the incremental evolution equations for both stress and structure are given.

In the case of granular matter, the concept of a (homogeneous) material point in a continuum model is
debated, and many studies have been devoted to the introduction of a length scale in the constitutive model,
starting from the Cosserat brothers, see [11,44,53] among others. Here we limit ourselves and state that a finite-
size system is always needed, in order to calibrate a continuum model. Every model interpretation works only
between the upper/lower bounds of infinite system and particle scale. When a finite-size system is considered
an elastic range can always be detected, such that rearrangements happen (see Sect. 4.2) with negligible(tiny)
probability for very small strain, and an elasto-plastic framework could then make sense. In this work we
introduce a local rate-type model in Eq. (18), and identify elasticity as the unique initial, static, configuration,
from which the (incrementally irreversible) evolution of stress and structure follows. Our choice is to reduce
elasticity to a “punctual range,” as plastic deformations (which include irreversible opening/closing of contacts
by large scale rearrangements) will dominate for large deformations. Dynamics and kinetic fluctuations, leading
to relaxation, are not considered here, but also need to be taken into account, see e.g., [33].

6 Summary and outlook

In a triaxial box, the four elastic moduli that describe the incremental, elastic constitutive behavior of an
anisotropic granular material in terms of volumetric/deviatoric components, namely the bulk modulus B, the
two anisotropic moduli A1, A2 and the octahedral shear modulus Goct, can be measured by applying small
strain perturbations to relaxed states that previously experienced a large strain along a volume-conserving
(undrained) shear path. A connection between the macroscopic elastic response and the micromechanics is
established, by considering both stress and fabric tensors, σσσ and F, respectively. While the bulk modulus
B depends on the isotropic contact network Fv, the deviatoric component of the fabric tensor Fdev is the
fundamental state variable determining the ratios between the (cross-coupling) anisotropic and bulk moduli.
When the deviatoric stress and strain are appropriately scaled (normalized), we find that the moduli reduce
to three relevant ones, i.e., A = A1 = A2 = aFdev B, with a ≈ 1. The anisotropy moduli are related to
both deviatoric and isotropic fabric, as the whole contact network determines how the system will react to
a perturbation. Surprisingly, when the shear resistance Goct is considered, both the contact network and the
deviatoric stress determine the incremental behavior of the assembly. When the initial response is subtracted, the
residual ratio Goct/B − (

Goct/B
)

ini scales with the deviatoric state of the system, by the product σ ∗
dev Fdev. For
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strain amplitudes larger than about 10−4, rearrangements in the sample take place, and the behavior deviates
from elastic (reversible). The effect of increasing amplitude of isotropic/deviatoric strain perturbations on
isotropic/deviatoric stress and fabric is investigated, in various cases from nearly isotropic states to steady
states at various different densities. For very small strain, the initial (linear) elastic regime, visible in the
stress response, is associated with strictly no change in fabric. For higher strain amplitude applied to a nearly
isotropic state, plasticity comes into play, and the incremental stress–strain relation deviates from linear as
soon as the contact network changes. When the system is strained up to the steady state, the elastic regime is
tiny (compared to the nearly isotropic states), and both stress and fabric display first elastic and then plastic
response to smaller deviatoric strains. In other words, when the system was strained up to the steady state,
the elastic regime becomes smaller, and both stress and fabric display no change associated to saturation.
Large volumetric strain induces substantial modifications, as the sample previously subjected only to volume-
conserving deformation experiences now large volume changes. In the limit of large strain, the tangential
moduli of the stress–strain and fabric-strain curves (see Fig. 5) are recovered. The relation between particle
rearrangements and macro-scale plasticity is a present object of investigation, as well as the transition between
local/global plastic regimes. As an important result, our study provides a new way to indirectly characterize
the granular structure. Once the moduli in a given isotropic/anisotropic configuration have been measured by
wave propagation experiments, they can be uniquely associated with the internal fabric. However, we do not
expect the proportionality factors to remain constant for different materials.

As further step, a simple constitutive model is introduced that involves anisotropy, as proposed in Refs.
[48,51]. The nonlinear elastic behavior is established, and the irreversible/ plastic contribution is introduced via
empirical probabilities for plastic events, that require more research and theoretical support. The dependence
of the model parameters on volume fraction and polydispersity has been analyzed in previous extensive work
[30,39]. Here, by using the new relations for the elastic moduli, we are able to integrate the increments at
each state along a generic deformation path. Hence, we can predict the evolution of pressure, shear stress
and fabric for large strain, and also at and after reversal. The method is first calibrated and then applied to
a volume-conserving (undrained) shear cycle. When the prediction is compared with numerical simulations,
quantitative agreement is found for the deviatoric field variables. The most notable feature of soft but different
response of shear stress and fabric to reversal of strain is well captured; the pressure response amplitude is
underestimated by the present model.

This study concerns a seemingly unrealistic material of spheres without friction and interacting with linear
contact forces to exclude effects that are due to contact nonlinearity, friction and/or non-sphericity. This allows
to unravel the peculiar interplay of stress with microstructure. However, the work should be extended to more
realistic cases involving particle shape, friction, and non-linear contact behavior. We expect that friction will
not completely change the observed relations between stiffness and fabric state, but possibly will add new
effects to be explored in the future; the deviatoric fabric and the moduli are expected to change quantitatively
when tangential forces are included. The contacts nonlinearity will introduce an extra pressure-dependence
for the moduli, as already shown by many authors (see e.g., [7,16,50,78] in the case of Hertzian interactions).
Speculating about the effects of shape goes beyond the scope of this study. A similar analysis is already in
progress to check the influence of polydispersity on the relation between elastic stiffness and microstructure,
as polydispersity affects the contact network, the structure, and the orientation of contacts [24,25,39].

Future work will focus on the extension of our small perturbation approach to elasto-plasticity, by using
concepts like e.g., the Gudehus response envelope [27,54]. Other theoretical approaches involve ideas proposed
by Einav [17], or by Jiang and Liu [33], for which our results can provide a microscopically-based calibration
of parameters, but details are not discussed here. The information obtained for the pure elastic range can then
be used to decouple the plastic contribution, associated with rearrangements, and to study the flow rule. The
validation of the present analysis with experimental data is another important goal. Nevertheless, the issue
of measuring fabric from laboratory experiments is far from solved, even though big advances have been
made in recent years using photoelasticity and microtomography CT-scans [5,29,34,74]. A partial validation
is anyway possible when measuring the residual dependence of the elastic response from variables other than
stress and porosity [19], by means of acoustic measurements [36]. The behavior after more than one cycle
deserves further investigation, from both simulational and theoretical points of view, to detect features like
creep, liquefaction and ratcheting, analyzed in preliminary works [51] with constant elastic moduli and for
many cycles [41].

Finally, a general tensor formulation that allows for highly different orientations of strain-rate, stress and
fabric is an open issue, but can be inspired by the works of Thornton [77] and Zhao and Guo [87].
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