364 research outputs found

    Mitochondrial phenotypes in genetically diverse neurodegenerative diseases and their response to mitofusin activation

    Get PDF
    Mitochondrial fusion is essential to mitochondrial fitness and cellular health. Neurons of patients with genetic neurodegenerative diseases often exhibit mitochondrial fragmentation, reflecting an imbalance in mitochondrial fusion and fission (mitochondrial dysdynamism). Charcot-Marie-Tooth (CMT) disease type 2A is the prototypical disorder of impaired mitochondrial fusion caused by mutations in the fusion protein mitofusin (MFN)2. Yet, cultured CMT2A patient fibroblast mitochondria are often reported as morphologically normal. Metabolic stress might evoke pathological mitochondrial phenotypes in cultured patient fibroblasts, providing a platform for the pre-clinical individualized evaluation of investigational therapeutics. Here, substitution of galactose for glucose in culture media was used to redirect CMT2A patient fibroblasts (MFN2 T105M, R274W, H361Y, R364W) from glycolytic metabolism to mitochondrial oxidative phosphorylation, which provoked characteristic mitochondrial fragmentation and depolarization and induced a distinct transcriptional signature. Pharmacological MFN activation of metabolically reprogrammed fibroblasts partially reversed the mitochondrial abnormalities in CMT2A and CMT1 and a subset of Parkinson\u27s and Alzheimer\u27s disease patients, implicating addressable mitochondrial dysdynamism in these illnesses

    Investigating discrepancies between experimental solid-state NMR and GIPAW calculation : NC–N 13C and OH⋯O 1H chemical shifts in pyridinium fumarates and their cocrystals

    Get PDF
    An NMR crystallography analysis is presented for four solid-state structures of pyridine fumarates and their cocrystals, using crystal structures deposited in the Cambridge Crystallographic Data Centre, CCDC. Experimental one-dimensional, one-pulse 1H and 13C cross-polarisation (CP) magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and two-dimensional 14N–1H heteronuclear multiple-quantum coherence MAS NMR spectra are compared with gauge-including projector augmented wave (GIPAW) calculations of the 1H and 13C chemical shifts and the 14N shifts that additionally depend on the quadrupolar interaction. Considering the high ppm (>10 ppm) 1H resonances, while there is good agreement (within 0.4 ppm) between experiment and GIPAW calculation for the hydrogen-bonded NH moieties, the hydrogen-bonded fumaric acid OH resonances are 1.2–1.9 ppm higher in GIPAW calculation as compared to experiment. For the cocrystals of a salt and a salt formed by 2-amino-5-methylpyridinium and 2-amino-6-methylpyridinium ions, a large discrepancy of 4.2 and 5.9 ppm between experiment and GIPAW calculation is observed for the quaternary ring carbon 13C resonance that is directly bonded to two nitrogens (in the ring and in the amino group). By comparison, there is excellent agreement (within 0.2 ppm) for the quaternary ring carbon 13C resonance directly bonded to the ring nitrogen for the salt and cocrystal of a salt formed by 2,6-lutidinium and 2,5-lutidine, respectively

    Innovative package for frontline maternal, newborn and child health workers in South Sudan

    Get PDF
    Improving maternal, newborn, and child health is a leading priority worldwide. It is a particularly urgent issue in South Sudan, which suffers from the world’s worst maternal mortality and among the worst newborn and child mortalities. A leading barrier to improving these health indices is limited frontline health worker capacity. In partnership with the Ministry of Health, the Division of Global Health and Human Rights (Department of Emergency Medicine, Massachusetts General Hospital, Boston, USA) has developed and is currently implementing its novel Maternal, Newborn, and Child Survival (MNCS) Initiative throughout much of South Sudan. The purpose of MNCS is to build frontline health worker capacity through a training package that includes:1. A participatory training course2. Pictorial checklists to guide prevention, care, and referral3. Re-useable medical equipment and commodities.Program implementation began in November 2010 utilizing a training-of-trainers model. To date, 72 local trainers and 632 frontline health workers have completed the training and received their MNCS checklists and commodities. Initial monitoring and evaluation results are encouraging as further evaluation continues. This innovative training package may also serve as a model for building capacity for maternal, newborn, and child health in other resource limited settings beyond South Sudan

    Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A

    Get PDF
    Charcot-Marie-Tooth disease type 2A (CMT2A) is an untreatable childhood peripheral neuropathy caused by mutations of the mitochondrial fusion protein, mitofusin (MFN) 2. Here, pharmacological activation of endogenous normal mitofusins overcame dominant inhibitory effects of CMT2A mutants in reprogrammed human patient motor neurons, reversing hallmark mitochondrial stasis and fragmentation independent of causa

    EuroTracker (R) dyes: design, synthesis, structure and photophysical properties of very bright europium complexes and their use in bioassays and cellular optical imaging

    Get PDF
    The development of the brightest luminescent europium(III) complexes is traced, including analysis of the C3-symmetric core complex based on a functionalized triazacyclononane and identification of the most suitable strongly absorbing chromophore. Strategies for the synthesis of the complexes, including enantiopure analogues, are outlined and opportunities for applications in time-resolved microscopy and spectral imaging emphasised. Practicable examples are introduced, including selective organelle staining for cellular optical imaging at 65 nm resolution and the development of new bioassays using time resolved FRET methods

    5-amino-2-methylpyridinium hydrogen fumarate : an XRD and NMR crystallography analysis

    Get PDF
    Single‐crystal X‐ray diffraction structures of the 5‐amino‐2‐methylpyridinium hydrogen fumarate salt have been solved at 150 and 300 K (CCDC 1952142 and 1952143). A base‐acid‐base‐acid ring is formed through pyridinium‐carboxylate and amine‐carboxylate hydrogen bonds that hold together chains formed from hydrogen‐bonded hydrogen fumarate ions. 1H and 13C chemical shifts as well as 14N shifts that additionally depend on the quadrupolar interaction are determined by experimental magic‐angle spinning (MAS) solid‐state nuclear magnetic resonance (NMR) and gauge‐including projector augmented wave (GIPAW) calculation. Two‐dimensional homonuclear 1H‐1H double‐quantum (DQ) MAS and heteronuclear 1H‐13C and 14N‐1H spectra are presented. Only small differences of up to 0.1 ppm and 0.6 ppm for 1H and 13C are observed between GIPAW calculations starting with the two structures solved at 150 and 300 K (after geometry optimisation of atomic positions, but not unit cell parameters). A comparison of GIPAW calculated 1H chemical shifts for isolated molecules and the full crystal structures is indicative of hydrogen bonding strength

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
    • 

    corecore