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Abstract 

Single-crystal X-ray diffraction structures of the 5-amino-2-methylpyridinium hydrogen fumarate salt 

have been solved at 150 and 300 K (CCDC 1952142 and 1952143). A base-acid-base-acid ring is 

formed through pyridinium-carboxylate and amine-carboxylate hydrogen bonds that hold together 

chains formed from hydrogen-bonded hydrogen fumarate ions. 1H and 13C chemical shifts as well as 

14N shifts that additionally depend on the quadrupolar interaction are determined by experimental 

magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) and gauge-including 

projector augmented wave (GIPAW) calculation. Two-dimensional homonuclear 1H-1H double-

quantum (DQ) MAS and heteronuclear 1H-13C and 14N-1H spectra are presented. Only small differences 

of up to 0.1 ppm and 0.6 ppm for 1H and 13C are observed between GIPAW calculations starting with 

the two structures solved at 150 and 300 K (after geometry optimisation of atomic positions, but not 

unit cell parameters). A comparison of GIPAW calculated 1H chemical shifts for isolated molecules and 

the full crystal structures is indicative of hydrogen bonding strength.  

 

 

Introduction 

Salt formation has been common practice within the pharmaceutical industry for more than 25 years1 

as a method of altering the biophysical characteristics of products without altering their pharmacology. 

An NMR crystallography approach,2-6 where solid-state NMR and density functional theory (DFT) 

calculations are employed alongside complementary techniques, is increasingly utilised to characterise 

the solid form. In the case of crystalline solids, it generally accompanies a structure solution from X-

ray diffraction (XRD), providing further insight into the intermolecular interactions and allowing 

validation and refinement of atomic positions. This is particularly crucial for systems solved from only 

powder XRD (PXRD) data. 

 The development of salt systems can be complicated by hydrate formation, as charged ions can 

interact strongly with polar molecules such as water,7 which generally leads to instability issues and 

room temperature phase transitions.8 Many pharmaceutically acceptable counter ions contain 
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carboxylate groups which are strongly charged but studies of the Cambridge Structural Database (CSD) 

show that the incidence of hydrate formation is significantly lower for crystallisations involving 

pyridine derivatives.9  

Here we report on the crystallisation of 5-amino-2methylpyridine (52AMP) with fumaric acid 

(FA), a pharmaceutically acceptable co-former (see Scheme 1). A new salt form, 5-amino-

2methylpyridinium hydrogen fumarate (52AMP:F) is reported from single crystal XRD (SXRD) and 

characterised using a multi-nuclear NMR crystallography approach. 

 

 

Experimental details 

All chemicals were obtained from Sigma Aldrich (UK) at purities of 98% or higher and used without 

further purification. 52AMP:F was crystallised by mixing the base (81 mg) and fumaric acid (87 mg) 

in the minimum amount of hot methanol required to dissolve all the solutes (~ 15 mL) and then allowing 

the resulting solution to cool slowly at room temperature. Crystals began to form after two days. Crystal 

growth was improved by co-grinding before dissolution and the addition of seed crystals to subsequent 

crystallisations. 

 Crystals were selected for SXRD using polarised light microscopy with an Olympus SZ61 

Stereomicroscope. Those that appeared by shape and birefringence to be single crystals were chosen. 

SXRD was carried out using Cu Kα1 (1.5406 Å) on a Rigaku Oxford Diffraction SuperNova 

diffractometer with an Atlas S2 CCD detector equipped with an Oxford Cryosystems N-Helix cooling 

system. Crystal screening was conducted at room temperature. CrysAlisPro10 data-collection and 

processing software was used, allowing crystals to be checked for quality and giving a preliminary unit 

cell determination by using a short pre-experiment prior to full data collection. This pre-experiment was 

also used to screen a minimum of 10 crystals from each crystallisation. Following full data collection, 

ShelXL11 was used for structure solution and a least-squares refinement was run, using the Olex212 

software. Following screening by SXRD, the most crystalline components of each crystallisation were 

ground to a fine powder and the structure was checked by PXRD to determine bulk purity and ensure 

no changes had occurred under grinding, by comparing the experimental powder pattern to the pattern 

predicted from the crystal structure. PXRD was performed on a Panalytical X’Pert Pro MPD equipped 

Scheme 1: Molecular structures of 5-amino-2-methylpyridinium (52AMP) and hydrogen 

fumarate molecules with the atomic labels used in this work. 
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with a curved Ge Johansson monochromator, giving pure Cu Kα1 radiation and a solid state PiXcel 

detector. The powder samples were mounted on a zero-background offcut-Si holder and spun at 30 rpm. 

Each sample was run with a step size of 0.013° and time per step of 2850 s. A comprehensive analysis 

of the powder patterns was undertaken using TOPAS Academic v6,13 which was used for Le Bail14 and 

Rietveld15 refinements. 

 1D 1H one-pulse, 2D 1H single quantum (SQ) spin-diffusion (NOESY-type), 2D 1H double 

quantum (DQ) with one rotor period of BaBa recoupling16, 17 and 2D 14N-1H HMQC18-21 with R3 

recoupling22, 23 experiments were performed on a Bruker Avance II+ spectrometer, operating at 1H and 

14N Larmor frequencies of 600.0 MHz and 43.4 MHz, respectively, using a 1.3 mm HXY Bruker probe 

in double resonance mode. A 1H one-pulse MAS spectrum was acquired with 8 coadded transients using 

a recycle delay of 80 s (this recycle delay was sufficient to ensure that the signal had plateaued). Each 

2D fast MAS experiment employed a rotor synchronised t1 increment of 16.67 μs and was acquired 

with 8 coadded transients for each of 128 t1 FIDs using a recycle delay of 80 s, corresponding to an 

experimental time of 23 hours. 133 μs of R3 recoupling was employed for the 2D 14N-1H HMQC. The 

spin-diffusion spectrum was collected with a mixing time of 1 s. 

1D 1H-13C cross-polarisation (CP) MAS and 2D 1H-13C heteronuclear correlation (HETCOR) 

experiments were performed on a Bruker Avance III spectrometer, operating at 1H and 13C Larmor 

frequencies of 500.0 MHz and 125.8 MHz, respectively, using a 3.2 mm HX probe. A 13C CP MAS 

spectrum was acquired with 16 coadded transients, a CP contact time of 1500 μs and a recycle delay of 

80 s. A 2D 1H-13C HETCOR spectrum was acquired with 24 transients coadded for each of 120 t1 FIDs 

using a recycle delay of 80 s, a t1 increment of 36 μs and a CP contact time of 500 μs (corresponding to 

a total experiment time of 64 hrs). eDUMBO-122
24, 25 homonuclear decoupling was used with a 32 μs 

cycle, with 320 divisions of 100 ns each. The scaling factor was determined to be 1.6. In the HETCOR 

pulse sequence, the following phase cycling was employed: 1H 90° pulse (90º 270°), 13C CP contact 

pulse (2{0°} 2{180°} 2{90°} 2{270°}), receiver (0° 180° 180° 0° 90° 270° 270° 90°). For both CP 

MAS and HETCOR 1H-13C experiments, SPINAL6426 1H heteronuclear decoupling was applied during 

the acquisition of the 13C FID, with a pulse duration of 5.9 μs at a nutation frequency of 100 kHz, and 

a 70 to 100% ramp27 on the 1H channel was used for the CP contact time with nutation frequencies of 

47.5 and 60 kHz for 13C and 1H, respectively. In all cases (except during CP), a 1H nutation frequency 

of 100 kHz was used corresponding to a 1H 90° pulse duration of 2.5 μs. 

 13C and 1H chemical shifts are referenced with respect to tetramethylsilane (TMS) via L-alanine 

at natural abundance as a secondary reference (1.1 ppm for the CH3 
1H resonance and 177.8 ppm for 

the CO 13C resonance) corresponding to adamantane at 1.85 ppm (1H)28 and 38.5 ppm (13C)29. 14N shifts 

are referenced with respect to a saturated NH4Cl aqueous solution via spectra of L-β-aspartyl-L-alanine 

at natural abundance (−284 ppm for the lower NH resonance at a Larmor frequency of 43.4 MHz) 

corresponding to liquid CH3NO2 at 0 ppm.20, 30 1H, 13C and 14N shifts can be experimentally determined 

to an accuracy of ± 0.2, ± 0.1 and ± 5 ppm, respectively. 
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 Density functional theory (DFT) calculations were performed using CASTEP31 Academic 

Release version 16.1. All calculations used the Perdew Burke Ernzerhof (PBE) exchange correlation 

functional,32 a plane-wave basis set with ultrasoft pseudopotentials and a plane-wave cut-off energy of 

700 eV. Integrals over the Brillouin zone were taken using a Monkhorst-Pack grid of minimum sample 

spacing 0.1 × 2π Å1 (unless otherwise stated). Geometry optimisation was performed (all atoms were 

allowed to move) on both the 150 K and 300 K structures with the unit cell parameters fixed to the 

values determined by diffraction at the specific temperature. Note that the numbering used in this paper 

(see Scheme 1) follows from the CASTEP calculation where hydrogen and carbon atoms for the two 

equivalent (Z = 2) hydrogen fumarate ions are listed first (i.e., positions C5 to C8 and H4 and H6 are 

equivalent to C1 to C4 and H1 to H3). 

NMR parameters were calculated using the gauge-including projector-augmented wave 

(GIPAW)33 method and were performed for both the geometry optimised crystal structures as a whole 

and for each of the isolated molecules in the asymmetric unit. For the isolated molecule calculations, 

each molecule in the asymmetric unit was extracted from the geometry optimised unit cell and placed 

in a sufficiently large box such that it could not interact with repeated molecules across periodic 

boundary conditions34 (unit cell dimensions increased by 10 Å in each direction). As each individual 

molecule carried a charge, this was specified in the .param file.35  

The calculated isotropic chemical shifts (δiso
calc) were determined from the calculated chemical 

shieldings (σcalc) by δiso
calc = σref – σcalc, with calculated σref values of 30.0 and 170.8 ppm for 1H and 13C, 

respectively. σref was determined for 1H and 13C by taking the sum of the experimental chemical shift 

and the GIPAW calculated absolute isotropic chemical shieldings. The resulting y-intercept was taken 

as σref.
36, 37 A literature value of 153 ppm was used for 14N.38 It is noted that it is common practice to 

calculate a specific reference shielding for each system39, though average values over a range of 

compounds are also available.40 By comparing the parameters in the full crystal structure with those for 

the isolated molecule, insight is provided into the intermolecular interactions responsible for 

maintaining the crystal structure.41 

 

 

Results and Discussion 

XRD 

The crystal structure of 52AMP:F has been determined, as described below, at both 150 K and 300 K 

and the structures deposited with the CCDC, no. 1952142 and 1952143, respectively. Selected crystal 

data for the structure at each temperature are given in Table 1. A small thermal expansion occurred on 

heating from 150 K to 300 K but with no evident change in the molecular packing. Hydrogen atoms 

were found in the electron density map. Initial verification of proton transfer was completed by 
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comparison of the carboxylate C-O bond lengths and was then confirmed by 14N-1H HMQC NMR 

experiments, as discussed below. 
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52AMP:F has a stoichiometry of 1 : 1, base : acid, and crystallises in the triclinic space group 

P1. Hydrogen fumarate molecules form acid chains along the a-axis with graph set notation C1
1(7) (Fig. 

a 

b 

d 

c 

Figure 1: Packing of 52AMP:F showing (a) the acid chain, the paired acid chains linked through the 52AMP molecules 

viewed (b) along the c axis and (c) along the a axis, and (d) a set of paired chains joined into the smaller ring motif. 

Table 1: Selected crystal data for 52AMP:F for structures determined at both 150 K and 300 K 

Stoichiometry (base : acid) 1 : 1  1 : 1  

Chemical formula C10H12N2O4 C10H12N2O4 

Formula weight (g mol−1) 224.22 224.22 

Crystal system Triclinic Triclinic 

Space group P1 P1 

a (Å) 8.0467(3) 8.0482(6) 

b (Å) 8.0181(3) 8.1802(6) 

c (Å) 9.3998(3) 9.5519(6) 

α (°) 109.263(3) 110.893(7) 

β (°) 93.715(3) 92.764(6) 

γ (°) 110.974(3) 111.438(7) 

Z 2 2 

Temperature (K) 150 300 

R1 [I > 2σ(I)] 0.0354 0.0435 
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1a).42 These chain structures, with a base ion hydrogen bonded to the carboxylate group of each 

hydrogen fumarate, are directly analogous to the chain structures seen in 2,6-lutidinium hydrogen 

fumarate.43, 44 Pairs of these chains, running in opposite directions, are linked through the 52AMP ions 

associated with each hydrogen fumarate (Fig. 1b). Through pyridinium-carboxylate and amine-

carboxylate H-bonds, a base-acid-base-acid ring is formed, R4
4(18), which supports this pairing (Fig. 

1c).42 A H-bond via the other amino proton, to the carboxylic acid O=C, allows crosslinking between 

paired chains, forming a H-bonded layer on the (010) crystal plane (Fig. 1d). These layers then stack to 

form the 3D structure. Neither fumaric acid nor doubly ionised fumarate are present, with the occurrence 

of hydrogen fumarate instead preventing the formation of the base-acid-base units seen in other related 

systems, such as Bis-(2-amino-5-methylpyridinium) fumarate fumaric acid.45, 46 The H-bond parameters 

at 300 K for the significant H-bonding motifs identified are given in Table 2.  

PXRD of 52AMP:F showed no evident change in structure on grinding (SI, Fig. S1). A Rietveld 

refinement of the experimental powder pattern against the SXRD structure gave Rwp = 8.59% and RBragg 

= 1.24% (SI, Tables S1 and S2). 

 

NMR 

Fig. 2 shows 1D 1H MAS and 1H-13C CP MAS spectra for 52AMP:F. Assignments are based on both 

the GIPAW calculated chemical shifts (Tables 3 and 4) and the 2D MAS NMR spectra, discussed in 

detail below. It is interesting to note that, despite the noticeable thermal expansion of the unit cell 

between 150 K and 300 K (Table 1), any changes in interatomic distances are too small to result in 

significant changes in the GIPAW calculated chemical shifts, with differences limited to 0.1 ppm and 

0.6 ppm for 1H and 13C, respectively. 

 52AMP:F show good agreement for 1H between experimental NMR chemical shifts and 

calculated GIPAW chemical shifts. Surprisingly, as no indication was seen in the PXRD pattern in Fig. 

S1, the 1H MAS spectrum for 52AMP:F has a resonance thought to correspond to crystalline fumaric 

acid at 12.8 ppm (Fig. 2) as seen previously for 2,6-lutidinium hydrogen fumarate.44 Other than this 

minor secondary phase, the only discrepancy for 52AMP:F (the established discrepancy between 

GIPAW calculations and experimental values is only around 1% of the chemical shift range, ~ 0.2 ppm 

for 1H) corresponds to the apparent overcalculation of H3, the OH proton involved in an OH···O H-

bond, which experimentally is 1.6 ppm lower than the calculated value (δiso
calc = 18.4 ppm compared to 

Table 2: Selected structural parameters for 52AMP:F at 150 K (following geometry optimisation). 

N···O distance 

(Å) 

NH+···O 

angle (°) 

NH···O angle 

(°) 

O···O distance 

(Å) 

OH···O angle 

(°) 

2.65 160.4 -   

2.92 - 160.1   

2.98 - 163.3   

   2.50 178.1 
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δiso
exp = 16.8 ppm). This is the same environment for which a larger than anticipated discrepancy was 

previously described for 2,6-lutidine hydrogen fumarate.44 

 Despite the excellent agreement seen for the 1H chemical shifts for 52AMP:F, there is relatively 

poor agreement for the 13C chemical shifts. The 1% rule of thumb stated above gives expected error 

between GIPAW calculations and experimental values of up to ~2 ppm for 13C. It can be clearly seen 

in the 1D 1H-13C CP MAS spectrum in Fig. 2 that this is exceeded for numerous carbon environments 

in 52AMP:F. For the highest and lowest chemical shifts, as usual, GIPAW calculation underestimates 

and overestimates the low ppm and high ppm values, respectively. In addition, while C10 is calculated 

to lie 2.8 ppm lower than it is seen experimentally, both C3 and C4 are calculated to lie more than 3 

ppm higher than their experimental chemical shifts. These latter two are the CH carbons in the hydrogen 

fumarate anion.  

Fig. 3a shows that there are clear correlations in the 1H-1H DQ MAS spectrum of 52AMP:F for 

H12 (NH) with H3 (OH), H7 (aromatic CH) and the methyl group at δDQ = 15.0 + 16.8/7.1/1.0 = 

31.8/22.1/16.0 ppm. The low intensity resonances that appear as shoulders on the pair of H12-H7 cross-

Figure 2: 1H (600 MHz) one-pulse MAS (60 kHz) and 1H-13C CP-MAS (12.5 kHz) spectra of 52AMP:F (top and bottom, 

respectively) with stick spectra corresponding to GIPAW calculated chemical shifts. The assignments to each atom, as labelled 

in the structure on the right, are given. 
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peaks are thought to correspond to the H12-H9 proximity (δDQ = 15.0 + 6.1 = 21.1 ppm). The H12-H9 

correlation is expected to be weaker as H9 is significantly further away at 3.38 Å as compared to 2.71 

Å for H3 (see Table 5). A 2D SQ 1H-1H NOESY spectrum (Fig. 3b) was used to confirm the presence 

of fumaric acid as it shows the existence of two distinct phases. A mixing time of 500 ms was used to 

allow spin diffusion throughout the entirety of each phase,47, 48 with the clear separation of cross-peaks 

indicating the occurrence of more than one phase. Only a single correlation was seen for the resonance 

at δexp = 12.8 ppm, corresponding to a proximity to a proton with a chemical shift in the CH region, as 

Table 4: GIPAW calculated and experimental 1H chemical shifts 

  𝜹𝒄𝒂𝒍𝒄
𝒊𝒔𝒐

(1H) (ppm) 
𝜹𝒆𝒙𝒑 (1H) (ppm) 

 Atom 150 K 300 K 

Me H13/H14/H15 0.9 0.9 1.0 

CH H8 5.8 5.9 6.1 

 H9 6.0 5.9 6.1 

 H1 6.2 6.2 6.1 

 H2 6.3 6.3 6.1 

 H7 6.9 6.8 7.1 

NH2 H10 5.2 5.1 6.1 

 H11 7.0 7.1 7.1 

NH H12 15.1 15.2 15.0 

OH H3 18.4 18.4 16.8 

 
Table 3: GIPAW calculated and experimental 13C chemical shifts 

  𝜹𝒄𝒂𝒍𝒄
𝒊𝒔𝒐

(13C) (ppm) 
𝜹𝒆𝒙𝒑 (13C) (ppm) 

 Atom 150 K 300 K 

Me C14 12.9 12.9 17.4 

CH/C C12 124.5 124.6 127.0 

 C11 125.4 125.1 127.0 

 C13 131.7 131.3 129.9 

 C10 135.4 135.6 138.2 

 C3 135.9 136.3 132.5 

 C4 143.4 142.8 139.7 

 C9 146.3 146.4 147.5 

COOH/− C1 172.7 172.7 170.6 

 C2 173.2 173.2 171.7 
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expected for the OH proton of crystalline fumaric acid. The relatively low ratio of fumaric acid within 

the sample is evidenced by the lack of DQ correlations (evident at the selected base contour level) for 

the fumaric acid peak in the 1H-1H DQ MAS spectrum.  

Figure 3: 2D MAS (60 kHz) NMR spectra of 52AMP:F. (a) a 1H-1H DQ spectrum recorded with one rotor period of BaBa 

recoupling; (b) a 1H-1H SQ NOESY spectrum with tmix = 500 ms; and (c) a 14N-1H HMQC spectrum with 8 rotor periods of R3 

recoupling, with GIPAW calculated chemical shifts for N···H proximities < 2 Å shown as red crosses. All spectra were recorded 

at a 1H Larmor frequency of 600 MHz. Base contour levels are at 8.4%, 1.5% and 40.1% of the maximum peak height, 

respectively. Blue and green contours correspond to positive and negative intensity, respectively. The negative intensities seen 

at the CH3 and CH F1 (vertical axis) SQ frequencies in (b) are due to the much greater intensity of their auto-correlation peaks. 

The dashed diagonal lines in (a) and (b) indicate the (a) δDQ = 2δSQ  and (b) δSQ = δSQ diagonals. 

b 

c 

a 
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A 14N-1H HMQC spectrum of 52AMP:F (Fig. 3c) does not show any cross-peaks for the NH2 protons 

but confirms the assignment of the NH (H12) 1H resonance, with the calculated 14N chemical shift and 

quadrupolar parameters being consistent with proton transfer in the salt form (δexp = −126.1 ppm, δcalc 

= −126.6 ppm, see SI, Table S3). The absence of the NH2 correlation is likely due to the difference in 

build-up of the recoupled signal between nitrogen environments, with the NH2 signal already decaying 

before the NH signal reaches its maximum. 

 

 A 2D 1H-13C HETCOR MAS NMR spectrum of 52AMP:F is shown in Fig. 4, recorded using 

a CP contact time of 500 μs such that cross-peaks for longer-range C···H proximities are apparent as 

well as direct one-bond C-H connectivities. The 1H-13C HETCOR spectrum is shown together with 

crosses that represent the GIPAW calculated chemical shifts for the C-H dipolar correlations up to 3.3 

Å (see Table S4 in the SI). More correlations with the methyl protons are present experimentally than 

expected for this cut off distance, with small cross-peaks apparent for C3 (δexp = 132.5 ppm, δcalc = 135.9 

ppm), C9 (δexp = 147.5 ppm, δcalc = 146.3 ppm) and C1 (δexp = 170.6 ppm, δcalc = 172.7) which have 

methyl proton proximities of 3.51 Å (C3 and C9) and 3.40 Å (C1). Crosses for the GIPAW calculated 

chemical shifts for such long-range proximities (>3.3 Å) were not included as they are not seen 

experimentally for any other proton environments.  

 The aforementioned disparities between experiment and calculation for the 13C chemical shifts 

mean that C10 and C3 are seen experimentally in the opposite order to which they are calculated. Their 

calculated 13C chemical shifts lie only 0.4 ppm apart with C10 at the lower chemical shift. The 

assignment of C10 to the resonance at δexp = 138.2 ppm is, however, confirmed by its cross-peak with 

H12 at δexp = 15.0 ppm, with a C10-H12 proximity of 2.08 Å compared to a distance of 3.68 Å for C3-

Table 5: H···H proximities (<3.5 Å) and corresponding 1H DQ chemical shifts for the pyridine NH and the OH of 52AMP:F 

NH 
𝛅𝒊𝒔𝒐
𝒆𝒙𝒑

 SQ1 

(ppm) 
Proton 2 

𝛅𝒊𝒔𝒐
𝒆𝒙𝒑

 SQ2 

(ppm) 

𝛅𝒊𝒔𝒐
𝒆𝒙𝒑

 DQ 

(ppm) 

Separationa 

(Å) 

H12 (NH) 15.0 

H7 7.1 22.1 2.31 

H13/H14/H15 1.0 16.0 2.35 

H3 16.8 31.8 2.71 

H9 6.1 21.1 3.38 

H3 (OH) 16.8 

H2 6.1 22.9 2.78 

H8 6.1 22.9 2.93 

H7 7.1 23.9 2.93 

H11 7.1 23.9 2.94 

a H-H distances are taken from the DFT (CASTEP) optimised structure. Intermolecular proximities are denoted using italic font. 
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H12. The H12 cross-peak for the 13C resonance at δexp = 127.0 ppm also confirms that C12 lies under 

this peak along with C11. Correlations are missing for C2-H12, C2-H3, C3-H3 and C14-H12. The 

former two carbons are quarternary so this is not surprising, despite the relevant distances for C2 being 

significantly shorter than for other correlations present at 2.30 Å and 2.68 Å for H12 and H3, 

respectively. The absence of the C3-H3 cross-peak is expected as not only is C3 quaternary, but this 

corresponding distance is 3.29 Å, on the limit of what is seen for any other carbon environment. The 

absence of the C14-H12 cross-peak is rather more inexplicable as this is a methyl carbon and the C-H 

separation is 2.60 Å. 

 

Intermolecular interactions 

Comparing the GIPAW chemical shifts calculated for the entire crystal structure to those calculated for 

individual isolated molecules, as extracted from the geometry optimised crystal structure, is useful as 

significant differences between the two indicate the presence of intermolecular interactions.34, 41, 49-52 

For 1H, changes are considered significant for δCryst-Mol exceeding 1 ppm. The isolated molecule 

calculations for 52AMP:F identify only the four classical H-bonds (Table 6) that were assumed from 

proximities and angles within the crystal structure (Table 2). The OH···O interaction involving H3 is 

by far the strongest with δCryst-Mol = 11.9 ppm and corresponding to both the shortest distance, at 2.50 

Figure 4: A 1H (700 MHz)-13C CP (500 μs) HETCOR MAS (12.5 kHz) NMR spectrum of 52AMP:F recorded using FSLG 1H 

homonuclear decoupling in t1. GIPAW calculated chemical shifts are shown as red crosses for C···H proximities < 3.3 Å. The 

base contour level is at 4.9% of the maximum peak height. 
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Å, and the most linear bond, with an OHO angle of 178.1°. This is followed in strength by the 

pyridinium NH+···−O at δCryst-Mol = 5.5 ppm, which is the next shortest. Even allowing for the over 

estimation of OH···O 1H chemical shifts (discussed above), this δCryst-Mol value is still nearly twice as 

large as that for the pyridinium interaction. The other two significant interactions correspond to the 

amino NH···O H-bonds which are both weaker than the pyridinum H-bond with one (H10, which forms 

cross-links between paired acid chains) substantially so, only forming a H-bond with δCryst-Mol = 1.3 

ppm. Even the more tightly bound amino NH H-bond (for H11) only has δCryst-Mol = 3.0 ppm. H11 

corresponds to a marginally shorter N···O distance of 2.92 Å, compared to a distance of 2.98 Å for the 

H10 H-bond, which results in a stronger interaction despite the NHO angle being slightly less linear at 

160.1°, compared to 163.3° for the H10 H-bond. 

 

 

Conclusions 

The crystallisation of 5-amino-2-methylpyridine with fumaric acid results in a 1:1 salt, 52AMP:F, the 

structure of which was solved by SXRD. The molecular packing is based upon a hydrogen fumarate 

acid chain akin to that seen for 2,6-lutidinium hydrogen fumarate.43 PXRD was utilised to confirm the 

composition of the bulk prior to analysis by solid-state NMR.  

As well as exhibiting similar structural patterns as the 2,6-lutidinium salt, the OH···O 

interaction was also found to show a comparable discrepancy between the experimental and GIPAW 

calculated chemical shifts, with the hydrogen bonded proton calculated 1.6 ppm higher than observed 

experimentally for 52AMP:F (a difference of 1.9 ppm was recorded for 2,6-lutidinium hydrogen 

fumarate).44 Excluding this one exceptional proton, there was excellent agreement between GIPAW 

calculated and the experimentally observed resonances of both 1H chemical shifts and pyridinium 14N 

shift. The errors for the 13C chemical shifts were slightly higher than expected difference of ~2 ppm, 

with the largest difference (excluding the methyl carbon which differs due to temperature effects) being 

Table 6: A comparison of GIPAW calculated 1H shifts (in ppm) for the full geometry optimised crystal structure of 

52AMP:F and isolated molecules extracted from the geometry optimised crystal structure. 

Atom δExpt δCrystal δMolecule ΔδCrystal − Molecule 

H3 16.8 18.4 6.5 11.9 

H12 15.0 15.1 9.6 5.5 

H11 7.1 7.0 4.0 3.0 

H10 6.1 5.2 3.9 1.3 

H7 7.1 6.9 6.4 0.5 

H2 6.1 6.3 6.0 0.3 

H1 6.1 6.2 6.1 0.1 

H9 6.1 6.0 6.5 ‒0.5 

H8 6.1 5.8 6.5 ‒0.7 

H13/H14/H15 1.0 0.9 1.63 ‒0.7 
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−3.7 ppm, although the average absolute error still only 2.5 ppm. There is no obvious cause for this 

level of variation and no significant difference in it between calculations performed for the 150 K and 

300 K structures, which differ only by a small thermal expansion. 

The key intermolecular interactions supporting the structure were confirmed, by the isolated 

molecule GIPAW NMR chemical shift calculations, to consist of only four classical hydrogen bonds 

expected from analysis of the crystal structure, with no CH donors or π interactions apparent. The H-

bond strength, according to the change in calculated chemical shift between crystal and isolated 

molecule, matched that expected from the hydrogen bond parameters. The relative strength of the two 

weaker NH···O hydrogen bonding interactions, formed by each of the two NH2 protons, also implies 

that a slight lengthening of the hydrogen bond has a larger impact on hydrogen bonding strength than a 

small change in NH…O angle further from linearity. 
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