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Abstract 

An NMR crystallography analysis is presented for four solid-state structures of pyridine fumarates and 

their cocrystals, using crystal structures deposited in the Cambridge Crystallographic Data Centre, 

CCDC. Experimental one-dimensional, one-pulse 1H and 13C cross-polarisation (CP) magic-angle 

spinning (MAS) nuclear magnetic resonance (NMR) and two-dimensional 14N-1H heteronuclear 

multiple-quantum coherence MAS NMR spectra are compared with gauge-including projector 

augmented wave (GIPAW) calculations of the 1H and 13C chemical shifts and the 14N shifts that 

additionally depend on the quadrupolar interaction. Considering the high ppm (>10 ppm) 1H 

resonances, while there is good agreement (within 0.4 ppm) between experiment and GIPAW 

calculation for the hydrogen-bonded NH moieties, the hydrogen-bonded fumaric acid OH resonances 

are 1.2 to 1.9 ppm higher in GIPAW calculation as compared to experiment. For the cocrystals of a salt 

and a salt formed by 2-amino-5-methylpyridinium and 2-amino-6-methylpyridinium ions, a large 

discrepancy of 4.2 and 5.9 ppm between experiment and GIPAW calculation is observed for the 

quaternary ring carbon 13C resonance that is directly bonded to two nitrogens (in the ring and in the 

amino group). By comparison, there is excellent agreement (within 0.2 ppm) for the quaternary ring 

carbon 13C resonance directly bonded to the ring nitrogen for the salt and cocrystal of a salt formed by 

2,6-lutidinium and 2,5-lutidine, respectively.  

 

Introduction 

The NMR crystallography approach has been increasingly utilised to provide a detailed characterisation 

of solid systems, whereby solid-state magic-angle spinning (MAS) NMR and density functional theory 

(DFT) calculations, in particular using the gauge including projector augmented wave (GIPAW) 

method,1 are used alongside complementary techniques such as X-ray diffraction (XRD).2-6 The power 

of GIPAW has been demonstrated in numerous applications, notably providing a link between crystal 
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structures and NMR parameters, aiding both their development and validation7-9 as well as adding 

further insight to investigations of intermolecular interactions.10-15 

A key consideration is the level of agreement between experiment and calculation. For 1H and 

13C solid-state NMR of organic molecules, there is a typical maximum discrepancy corresponding to 

~1% of the chemical shift range, i.e., ~0.2 ppm and ~2 ppm for 1H and 13C, respectively.16-20 

Specifically, Engel et al have recently performed a Bayesian analysis and determined a discrepancy 

between experiment and GIPAW calculation of 2.9 ± 0.7 ppm for 13C in organic molecular solids.21 It 

is also known that the gradient of a plot of experimental versus calculated chemical shielding often 

deviates from unity, see for example reference.22 For 13C, this results in an undercalculation at low 

chemical shifts and an overcalculation at high chemical shifts, e.g. methyl and carboxylate carbons, 

respectively, when a single reference shielding is used for the entire spectrum. An alternative approach 

is to use different reference shieldings for different parts of the spectrum.18 

 Here we consider the four systems presented in Table 1. They are based on four differently 

substituted pyridine molecules and fumaric acid: specifically, two salts and two cocrystals of a salt are 

formed in the solid state. The structure of each system’s asymmetric unit is given in Figure 1, alongside 

the atomic labels used throughout this work. Salt and cocrystal formation can alter the properties of a 

compound, such as stability, solubility and hygroscopicity, making them of considerable interest to 

pharmaceutical and agrochemical industries.23-26 Salt formation in particular has been common practice 

in the development of active pharmaceutical ingredients for more than 25 years.27 The observation of a 

salt or cocrystal form often depends on the position of a single proton,9, 28 making NMR crystallography 

methods extremely useful for their characterisation. In this paper, we report the identification of a 1H 

and a 13C specific chemical environment within the systems listed in Table 1 (this Table states the CSD 

reference and number as well as the original literature reference for the crystal structure, and also the 

shorthand names used here) whose chemical shifts exhibit larger than expected discrepancies between 

experiment and GIPAW calculation.  
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Table 1: Solid-state structures available from the CCDC29 investigated in this paper. 

 

 

Experimental 

All chemicals were obtained from Sigma Aldrich (UK) at purities of 98% or higher and used without 

further purification. For each system, co-crystallisation was achieved by slow solvent evaporation over 

approximately 4 days. Powder XRD (see SI) was performed on a Panalytical X’Pert Pro MPD equipped 

Name 
Literature 

reference 

CSD 

reference 

CSD 

number 

26L:F - 2,6-lutidinium hydrogen fumarate Pan et al.30 MIBYEB 181445 

25L:FFA - 2,5-lutidine hemi-fumarate fumaric acid 
Haynes et 

al.31 
RESGEC 615314 

25AMP:FFA - 2-amino-5-methylpyridinium hemi-fumarate 

hemi-fumaric acid 

Hemamalini 

et al.32 
DUTNUC 788456 

26AMP:F-H2 - 2-amino-6-methylpyridinium hemi-fumarate 

dihydrate 

Selyani et 

al.33 
COGCIN 1521964 

FA -  Fumaric acid Brown34 FUMAAC 1161115 

Figure 1: Asymmetric unit of 26L:F, 25L:FFA, 25AMP:FFA and 26AMP:F-H2 (clockwise from top left) with the atomic 

labels used in this work –black numbers, small green numbers and blue numbers correspond to labels for C, H and N, 

respectively. Nitrogen and Oxygen atoms are in blue and red, respectively. 
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with a curved Ge Johansson monochromator, giving pure Cu Kα1 radiation, and a solid-state PiXcel 

detector. The powder samples were mounted on a zero-background offcut-Si holder, spinning at 30 

rpm. Each sample was run with a step size of 0.013° and the time per step ranged from 750-3500 s, 

depending on the sample volume available. 

Density functional theory (DFT) calculations were performed using CASTEP35 Academic 

Release version 16.1. All calculations used the Perdew Burke Ernzerhof (PBE) exchange correlation 

functional,36 a plane-wave basis set with ultrasoft pseudopotentials and a plane-wave cut-off energy of 

700 eV. Integrals over the Brillouin zone were taken using a Monkhorst-Pack grid of minimum sample 

spacing 0.1 × 2π Å1 (unless otherwise stated). The literature structures were downloaded from the 

Cambridge Crystallographic Data Centre (CCDC).29 For all structures, geometry optimisation was 

performed with the unit cell parameters fixed. NMR parameters were calculated using the gauge-

including projector-augmented wave (GIPAW)1 method and were performed for the geometry 

optimised crystal structures. 

 The calculated isotropic chemical shifts (δiso
calc) were determined from the calculated chemical 

shieldings (σcalc) by δiso
calc = σref – σcalc, with calculated σref values as stated in Table 2. σref was 

determined for 1H and 13C by taking the sum of the average experimental chemical shift and the average 

GIPAW calculated absolute isotropic chemical shielding. This is equivalent to considering a plot of 

experimental versus calculated chemical shielding, where the (negative) gradient of the line of best fit 

is constrained to unity, for which the y-intercept of the line of best fit then corresponds to σref.
37, 38 

 

Table 2: Reference shielding, σref, for each system. 

System 
σref (ppm) 

1H 13C 

26L:F 30.5 169.7 

25L:FFA 29.9 169.5 

25AMP:FFA 29.9 169.7 

26AMP:F-H2 29.9 170.7 

FA 30.0 - 

 

Solid-state NMR experiments were performed on: (1) a Bruker Avance III spectrometer, operating at 

1H and 13C Larmor frequencies of 500.0 MHz and 125.8 MHz, respectively; (2) a Bruker Avance II+ 

spectrometer, operating at 1H, 13C and 14N Larmor frequencies of 600.0 MHz, 150.7 MHz and 43.4 

MHz, respectively; (3) a Bruker Avance III HD spectrometer, operating at 1H, 13C and 14N Larmor 

frequencies of 700.0 MHz, 176.0 MHz and 50.6 MHz, respectively. 
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1.3 mm HXY probes in double resonance mode were used for 1H one-pulse MAS and 2D 14N-

1H heteronuclear multiple-quantum correlation (HMQC)39-42 (with R3 recoupling43, 44) experiments, at a 

MAS frequency of 60 kHz. 1H-13C CP MAS were conducted at an MAS frequency of 12.5 kHz. 

Additional experimental details are stated in Table 3. The 1H nutation frequency was 100 kHz (except 

during CP), corresponding to a 1H 90° pulse duration of 2.5 μs. The 2D 14N-1H HMQC experiment 

employed a rotor-synchronised t1 increment of 16.67 μs, 133 μs of R3 recoupling and the States-TPPI 

method for sign discrimination.45 For 1H-13C CP MAS experiments, SPINAL6446 1H heteronuclear 

decoupling was applied during the acquisition of the 13C FID, with a pulse duration of 5.9 μs at a 

nutation frequency of 100 kHz, and a 70 to 100% ramp47 on the 1H channel was used for the CP contact 

time with nutation frequencies of 47.5 and 60 kHz for 13C and 1H, respectively.  

13C and 1H chemical shifts are referenced with respect to tetramethylsilane (TMS) via L-alanine 

at natural abundance as a secondary reference (1.1 ppm for the CH3 
1H resonance and 177.8 ppm for 

the CO 13C resonance) corresponding to adamantane at 1.85 ppm (1H)48 and 38.5 ppm (13C)49. 14N shifts 

are referenced with respect to a saturated NH4Cl aqueous solution via spectra of L-β-aspartyl-L-alanine 

at natural abundance (−284 ppm for the lower NH resonance at a Larmor frequency of 43.4 MHz) 

corresponding to liquid CH3NO2 at 0 ppm.41, 50 The accuracy of determining 1H, 13C and 14N shifts from 

MAS NMR spectra is estimated as ± 0.2, ± 0.1 and ± 5 ppm, respectively. 

 

 Table 3: Experimental MAS NMR parameters applied for each of the systems. 

* Solid-state NMR experiments were performed at a 1H Larmor frequency of: (1) 500.0 MHz, (2) 

600.0 MHz, and (3) 700.0 MHz. 

  

 1H one-pulse 14N-1H HMQC 1H-13C CP 

 * 
Co-added 

transients 

Recycle 

delay (s) 
* 

Co-added 

transients 

FIDs 

in t1 

Recycle 

delay (s) 
* Probe 

Co-added 

transients 

CP contact 

time (μs) 

Recycle 

delay 

(s) 

26L:F 1 16 100 2 16 240 60 1 
4 mm 

HX 
32 750 78 

25L: 

FFA 
2 8 10 2 16 192 15 1 

4 mm 

HX 
32 1500 60 

25AMP

:FFA 
3 8 5 2 32 128 50 2 

2.5 mm 

HX 
64 2000 70 

26AMP

:F-H2 
2 4 75 3 8 136 80 2 

3.2 mm 

HX 
32 1500 80 
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Results 

We report here an NMR crystallography study of four related systems that are based on four differently 

substituted pyridine molecules and fumaric acid: specifically, two salts and two cocrystals of a salt. 

Their crystal structures have been previously reported and deposited in the CCDC as listed in Table 1 

(note that the experimental and GIPAW calculated results for 26L:F have been previously presented in 

Ref. 15). As noted above and expanded upon below, the focus of this paper is the identification of two 

specific chemical environments (see Fig. 2) for which there are significantly larger differences between 

their GIPAW calculated and experimental MAS NMR chemical shifts than expected. One discrepancy 

is for 1H in a OH···O hydrogen bond and the other discrepancy is for a quaternary 13C which is 

covalently bound to both a pyridinium nitrogen and an amino nitrogen. 

 

1H environment 

Fig. 3 shows 1D 1H one-pulse MAS spectra for each system containing an OH···O hydrogen bond, with 

stick spectra corresponding to GIPAW calculated chemical shifts for the geometry optimised crystal 

structures. Note that the experimental COOH 1H chemical shift for fumaric acid (FA) is taken from the 

literature.51 Assignments are made with the aid of both 2D 14N-1H HMQC MAS NMR spectra (Fig. 4) 

and GIPAW calculation (SI, Tables S1-S5). 

Figure 2: Chemical structures of the two environments which show large discrepancies between GIPAW calculated and 

experimental chemical shift: a 1H in a OH···O hydrogen bond (left) and a quaternary 13C between a pyridinium nitrogen and 

an amino nitrogen (right). 
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As has been reported previously,15 in 26L:F (Fig. 3), H13 is observed at a lower ppm value 

experimentally compared with GIPAW calculation and can be assigned to the peak at 15.8 ppm (rather 

than 17.7 ppm as calculated). The other high-ppm 1H resonance, corresponding to the NH+, has the 

same calculated chemical shift and is indeed seen experimentally at 17.7 ppm. The OH protons of FA, 

25AMP:FFA and 25L:FFA also showed the largest discrepancy between experiment and calculation of 

the chemical shift. In the latter case, the experimental chemical shifts for the two OH protons in the 

system lie at δiso
exp = 13.4 ppm, at a lower ppm value than for the NH+ proton, despite both being 

calculated at a higher chemical shift than this NH+ environment. As in 26L:F, the NH+ in 26AMP:F-

H2, 25AMP:FFA and 25L:FFA is at a similarly high chemical shift to the OH resonances but in each 

case shows good agreement with the GIPAW calculated chemical shift (Table 4). This suggests that the 

OH···O discrepancy is not simply explained by the known temperature dependence of hydrogen-

bonded chemical shifts, 52-59 as this would also be expected to effect the NH+···−O proton. 

The level of discrepancy between experiment and GIPAW calculation seen for each system is 

relatively consistent, with δexp-calc ranging from 1.9 to 1.2 ppm in 26L:F and FA, respectively. The 

Figure 3: 1H (600 MHz) one-pulse MAS (60 kHz) NMR spectra of 26L:F (top left), 25L:FFA (top right), 26AMP:F-H2 (bottom 

left) and 25AMP:FFA (bottom right) with stick spectra corresponding to GIPAW calculated chemical shifts for the geometry 

optimised crystal structures. The assignments to each proton are given (see Figure 1). For 25L:FFA (top right), a low intensity 

peak is observed between 17 and 18 ppm (denoted by ?); this is believed to correspond to a minority phase (note that this is 

largely obscured in the 1D 1H-13C CPMAS spectrum, presented below, due to both resonance overlap and the reduced signal 

to noise ratio). 
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lowest magnitude δexp-calc of 1.2 ppm is for fumaric acid, where there is a neutral carboxylic 

acid/carboxylic acid hydrogen bond.  

 

Table 4: GIPAW calculated and experimental MAS NMR  1H chemical shifts (in ppm) for the OH and NH moieties in 26L:F, 

25L:FFA, 25AMP:FFA, 26AMP:F-H2 and FA. 

System 
OH NH 

Atom δexp δcalc δexp-calc Atom δexp δcalc δexp-calc 

26L:F H13 15.8  17.7 1.9 H10 17.7 17.7 0.0 

25L:FFA H12/14 13.4/13.4 14.7/14.8 1.3/1.4 H10 14.3 13.9 0.4 

25AMP:FFA H19 14.7  16.0 1.3 H1 14.0 14.2 0.2 

26AMP:F-H2 - - - - H13 14.9 14.8 0.1 

FA  12.951 14.1 1.2 - - - - 

 

 

13C environment 

Fig. 5 shows 1H-13C CP MAS spectra for the four systems, with stick spectra corresponding to GIPAW 

calculated chemical shifts for the geometry optimised crystal structures. Assignments were made with 

the aid of the DFT calculations (SI, Tables S2-5).  

Figure 4: 14N-1H HMQC MAS (60 kHz) NMR spectra of 26L:F(top left), 25L:FFA (top right), 26AMP:F-H2 (bottom left) and 

25AMP:FFA (bottom right) recorded with 8 rotor periods of R3 recoupling (τRCPL = 133.6 μs). Spectra were recorded at ν0 

(1H) 600 MHz with the exception of 26AMP:F-H2, recorded at ν0 (1H) = 700 MHz. Red crosses correspond to the GIPAW 

calculated shifts of the expected NH correlations (SI, Tables S1 to S5). 
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 In 26AMP:F-H2, C9 is calculated at 151.3 ppm but is instead observed experimentally at 155.5 

ppm. 25AMP:FFA shows an even greater discrepancy with the calculated chemical shift for C1 5.9 

ppm lower than the experimental value of 153.8 ppm. By comparison, the quaternary carbons that sit at 

the analogous position in both 25L:FFA and 26L:F, directly bound to the pyridinium nitrogen, show 

excellent agreement between experiment and calculation with the largest discrepancy 0.2 ppm (Table 

5). As these are substituted with a methyl group rather than an amino group, the combination of amino 

and pyridinium interactions is thus correlated with the larger discrepancy between experiment and 

GIPAW calculation. No change in the 13C chemical shift was observed when recorded at a 1H Larmor 

frequency of 500 and 600 MHz (SI, Fig. S3), ruling out a shift of the 13C chemical shift due to enhanced 

second-order quadrupolar effects from the two adjacent 14N atoms. There is a known deviation from 

negative one in the gradient of a plot of experimental chemical shift against calculated chemical 

shielding, but this would be expected to affect the carboxyl and methyl carbons more significantly as 

they are further towards the edges of the chemical shift range. It is also of note that this would cause 

high-ppm 13C environments to be calculated at a higher chemical shift than they are observed 

experimentally rather than lower, as seen for the amino substituted quaternary carbons discussed here. 

To our knowledge, there are very few examples in the literature of such large discrepancies for 

13C: one example is that in 2006, Harris reported for the quaternary C5 site (fused between two 6-

membered ring with one C=C and two C-C bonds) in testosterone GIPAW calculation at 182.6 and 

182.7 compared to 170.6 and 172.0 ppm experimentally for the two distinct molecules in the 

asymmetric unit cell.60 
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Figure 5: 1H-13C CP-MAS (12.5 kHz) spectra of 26L:F(top left), 25L:FFA (top right), 26AMP:F-H2 (bottom left) and 

25AMP:FFA (bottom right), with stick spectra corresponding to GIPAW calculated chemical shifts. The assignments to each 

carbon are given (see Figure 1). Spectra were recorded at a 1H Larmor frequency of 500 MHz (top) and 600 MHz (bottom). 
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Table 5: GIPAW calculated and experimental MAS NMR 13C chemical shifts (in ppm) for the quaternary carbons at the 2-

position on the pyridinium ring in 26L:F, 25L:FFA, 25AMP:FFA and 26AMP:F-H2. 

System 

13C 

Atom δexp δcalc δexp-calc 

26L:F C1/5 152.6/152.6 152.4/152.6 0.2/0.0 

25L:FFA C1 152.4 152.5 0.1 

25AMP:FFA C9 153.8 147.9 5.9 

26AMP:F-H2 C1 155.5 151.3 4.2 

 

 

Conclusions 

An NMR crystallography study has been presented that reports 1H, 13C chemical shifts and 14N shifts 

for four differently substituted pyridine molecules and fumaric acid that occur as two salts and two 

cocrystals of a salt in the solid state. The focus of this paper is on two chemical environments for which 

a greater discrepancy is observed between experiment and GIPAW calculated chemical shifts that goes 

beyond the typically encountered maximum of 1% of the chemical shift range. These are the 1H in an 

OH···O hydrogen bond (which is observed 1.2-1.9 ppm below its calculated position) and a quaternary 

13C sitting covalently bound to both a pyridinium nitrogen and an amino nitrogen (which is observed 

4.2-5.9 ppm above its calculated position). These discrepancies between experiment and GIPAW 

calculation stand out because of the great success of such GIPAW calculations in reproducing 

experimental chemical shifts. 

For the 1H chemical shifts of the hydrogen-bonded fumaric acid protons, it would be interesting 

to investigate the temperature dependence52-59 to see if there are marked differences for the fumaric acid 

OH 1H resonances as compared to the NH+ 1H resonances. In this context, there is also work that 

combines molecular dynamics with GIPAW simulation.61-65 Note, however, that it is curious that this 

study has shown excellent agreement between experiment and GIPAW calculation for the NH+ 1H 

resonances even though the GIPAW calculation corresponds to 0 K. In addition, it would be interesting 

to investigate whether these discrepancies change if alternative calculation approaches are employed, 

such as the use of a hybrid DFT functional, e.g., PBE0 or the combination of a GIPAW calculation with 

a calculation on an isolated molecule at a higher level of theory, as described by Beran and co-

workers.66-68 
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