20,893 research outputs found
Generalized Ensemble and Tempering Simulations: A Unified View
From the underlying Master equations we derive one-dimensional stochastic
processes that describe generalized ensemble simulations as well as tempering
(simulated and parallel) simulations. The representations obtained are either
in the form of a one-dimensional Fokker-Planck equation or a hopping process on
a one-dimensional chain. In particular, we discuss the conditions under which
these representations are valid approximate Markovian descriptions of the
random walk in order parameter or control parameter space. They allow a unified
discussion of the stationary distribution on, as well as of the stationary flow
across each space. We demonstrate that optimizing the flow is equivalent to
minimizing the first passage time for crossing the space, and discuss the
consequences of our results for optimizing simulations. Finally, we point out
the limitations of these representations under conditions of broken ergodicity.Comment: 11 pages Latex, 2 eps figures, revised version, typos corrected, PRE
in pres
Local existence of dynamical and trapping horizons
Given a spacelike foliation of a spacetime and a marginally outer trapped
surface S on some initial leaf, we prove that under a suitable stability
condition S is contained in a ``horizon'', i.e. a smooth 3-surface foliated by
marginally outer trapped slices which lie in the leaves of the given foliation.
We also show that under rather weak energy conditions this horizon must be
either achronal or spacelike everywhere. Furthermore, we discuss the relation
between ``bounding'' and ``stability'' properties of marginally outer trapped
surfaces.Comment: 4 pages, 1 figure, minor change
The Enigmatic Radio Afterglow of GRB 991216
We present wide-band radio observations spanning from 1.4 GHz to 350 GHz of
the afterglow of GRB 991216, taken from 1 to 80 days after the burst. The
optical and X-ray afterglow of this burst were fairly typical and are explained
by a jet fireball. In contrast, the radio light curve is unusual in two
respects: (a) the radio light curve does not show the usual rise to maximum
flux on timescales of weeks and instead appears to be declining already on day
1 and (b) the power law indices show significant steepening from the radio
through the X-ray bands. We show that the standard fireball model, in which the
afterglow is from a forward shock, is unable to account for (b) and we conclude
that the bulk of the radio emission must arise from a different source. We
consider two models, neither of which can be ruled out with the existing data.
In the first (conventional) model, the early radio emission is attributed to
emission from the reverse shock as in the case of GRB 990123. We predict that
the prompt optical emission would have been as bright (or brighter) than 8th
magnitude. In the second (exotic) model, the radio emission originates from the
forward shock of an isotropically energetic fireball (10^54 erg) expanding into
a tenuous medium (10^-4 cm^-3). The resulting fireball would remain
relativistic for months and is potentially resolvable with VLBI techniques.
Finally, we note that the near-IR bump of the afterglow is similar to that seen
in GRB 971214 and no fireball model can explain this bump.Comment: ApJ, submitte
On the order of summability of the Fourier inversion formula
In this article we show that the order of the point value, in the sense of Łojasiewicz, of a tempered distribution and the order of summability of the pointwise Fourier inversion formula are closely related. Assuming that the order of the point values and certain order of growth at infinity are given for a tempered distribution, we estimate the order of summability of the Fourier inversion formula. For Fourier series, and in other cases, it is shown that if the distribution has a distributional point value of order k, then its Fourier series is e.v. Cesàro summable to the distributional point value of order k+1. Conversely, we also show that if the pointwise Fourier inversion formula is e.v. Cesàro summable of order k, then the distribution is the (k+1)-th derivative of a locally integrable function, and the distribution has a distributional point value of order k+2. We also establish connections between orders of summability and local behavior for other Fourier inversion problems
Distribution of N<sub>2</sub>O in the Baltic Sea during transition from anoxic to oxic conditions
In January 2003, a major inflow of cold and oxygen-rich North Sea Water terminated an ongoing stagnation period in parts of the central Baltic Sea. In order to investigate the role of North Sea Water inflow in the production of nitrous oxide (N2O), we measured dissolved and atmospheric N<2O at 26 stations in the southern and central Baltic Sea in October 2003.
At the time of our cruise, water renewal had proceeded to the eastern Gotland Basin, whereas the western Gotland Basin was still unaffected by the inflow. The deep water renewal was detectable in the distributions of temperature, salinity, and oxygen concentrations as well as in the distribution of the N2O concentrations: Shallow stations in the Kiel Bight and Pomeranian Bight were well-ventilated with uniform N2O concentrations near equilibrium throughout the water column. In contrast, stations in the deep basins, such as the Bornholm and the Gotland Deep, showed a clear stratification with deep water affected by North Sea Water. Inflowing North Sea Water led to changed environmental conditions, especially enhanced oxygen (O2) or declining hydrogen sulphide (H2S) concentrations, thus, affecting the conditions for the production of N2O. Pattern of N2O profiles and correlations with parameters like oxygen and nitrate differed between the basins. Because of the positive correlation between ΔN2O and AOU in oxic waters the dominant production pathway seems to be nitrification rather than denitrification.
Advection of N2O by North Sea Water was found to be of minor importance. A rough budget revealed a significant surplus of in situ produced N2O after the inflow. However, due to the permanent halocline, it can be assumed that the N2O produced does not reach the atmosphere. Hydrographic aspects therefore are decisive factors determining the final release of N2O produced to the atmosphere
Probing the BLR in AGNs using time variability of associated absorption line
It is know that most of the clouds producing associated absorption in the
spectra of AGNs and quasars do not completely cover the background source
(continuum + broad emission line region, BLR). We note that the covering factor
derived for the absorption is the fraction of photons occulted by the absorbing
clouds, and is not necessarily the same as the fractional area covered. We show
that the variability in absorption lines can be produced by the changes in the
covering factor caused by the variation in the continuum and the finite light
travel time across the BLR. We discuss how such a variability can be
distinguished from the variability caused by other effects and how one can use
the variability in the covering factor to probe the BLR.Comment: 12 pages, latex(aaspp4.sty), 2 figures, (To appear in ApJ
V1647 Ori (IRAS 05436-0007) in Outburst: the First Three Months
We report on photometric (BVRIJHK) and low dispersion spectroscopic
observations of V1647 Ori, the star that drives McNeil's Nebula, between 10
February and 7 May 2004. The star is photometrically variable atop a general
decline in brightness of about 0.3-0.4 magnitudes during these 87 days. The
spectra are featureless, aside from H-alpha and the Ca II infrared triplet in
emission, and a Na I D absorption feature. The Ca II triplet line ratios are
typical of young stellar objects. The H-alpha equivalent width may be modulated
on a period of about 60 days. The post-outburst extinction appears to be less
than 7 mag. The data are suggestive of an FU Orionis-like event, but further
monitoring will be needed to definitively characterize the outburst.Comment: Accepted for publication in the Astronomical Journa
Isolated and non-isolated dwarfs in terms of modified Newtonian dynamics
Within the framework of modified Newtonian dynamics (MOND) we investigate the
kinematics of two dwarf spiral galaxies belonging to very different
environments, namely KK 246 in the Local Void and Holmberg II in the M81 group.
A mass model of the rotation curve of KK 246 is presented for the first time,
and we show that its observed kinematics are consistent with MOND. We re-derive
the outer rotation curve of Holmberg II, by modelling its HI data cube, and
find that its inclination should be closer to face-on than previously derived.
This implies that Holmberg II has a higher rotation velocity in its outer
parts, which, although not very precisely constrained, is consistent with the
MOND prediction.Comment: Accepted in A&A as a Research Note. 6 pages, 3 figure
Quasi-Continuous Symmetries of Non-Lie Type
We introduce a smooth mapping of some discrete space-time symmetries into
quasi-continuous ones. Such transformations are related with q-deformations of
the dilations of the Euclidean space and with the non-commutative space. We
work out two examples of Hamiltonian invariance under such symmetries. The
Schrodinger equation for a free particle is investigated in such a
non-commutative plane and a connection with anyonic statistics is found.Comment: 18 pages, LateX, 3 figures, Submitted Found. Phys., PACS: 03.65.Fd,
11.30.E
Time Dependent Floquet Theory and Absence of an Adiabatic Limit
Quantum systems subject to time periodic fields of finite amplitude, lambda,
have conventionally been handled either by low order perturbation theory, for
lambda not too large, or by exact diagonalization within a finite basis of N
states. An adiabatic limit, as lambda is switched on arbitrarily slowly, has
been assumed. But the validity of these procedures seems questionable in view
of the fact that, as N goes to infinity, the quasienergy spectrum becomes
dense, and numerical calculations show an increasing number of weakly avoided
crossings (related in perturbation theory to high order resonances). This paper
deals with the highly non-trivial behavior of the solutions in this limit. The
Floquet states, and the associated quasienergies, become highly irregular
functions of the amplitude, lambda. The mathematical radii of convergence of
perturbation theory in lambda approach zero. There is no adiabatic limit of the
wave functions when lambda is turned on arbitrarily slowly. However, the
quasienergy becomes independent of time in this limit. We introduce a
modification of the adiabatic theorem. We explain why, in spite of the
pervasive pathologies of the Floquet states in the limit N goes to infinity,
the conventional approaches are appropriate in almost all physically
interesting situations.Comment: 13 pages, Latex, plus 2 Postscript figure
- …