Quantum systems subject to time periodic fields of finite amplitude, lambda,
have conventionally been handled either by low order perturbation theory, for
lambda not too large, or by exact diagonalization within a finite basis of N
states. An adiabatic limit, as lambda is switched on arbitrarily slowly, has
been assumed. But the validity of these procedures seems questionable in view
of the fact that, as N goes to infinity, the quasienergy spectrum becomes
dense, and numerical calculations show an increasing number of weakly avoided
crossings (related in perturbation theory to high order resonances). This paper
deals with the highly non-trivial behavior of the solutions in this limit. The
Floquet states, and the associated quasienergies, become highly irregular
functions of the amplitude, lambda. The mathematical radii of convergence of
perturbation theory in lambda approach zero. There is no adiabatic limit of the
wave functions when lambda is turned on arbitrarily slowly. However, the
quasienergy becomes independent of time in this limit. We introduce a
modification of the adiabatic theorem. We explain why, in spite of the
pervasive pathologies of the Floquet states in the limit N goes to infinity,
the conventional approaches are appropriate in almost all physically
interesting situations.Comment: 13 pages, Latex, plus 2 Postscript figure