3,389 research outputs found

    Translating policy to place: exploring cultural ecosystem services in areas of Green Belt through participatory mapping

    Get PDF
    \ua9 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Green Belts are longstanding planning designations, which primarily seek to prevent urban sprawl. Importantly, they form the open spaces close to where most people live, but we lack clarity over how Green Belts are used and valued by publics, and the cultural ecosystem services they provide. To address this policy and research gap, a public participatory mapping survey was conducted on the North-East England Green Belt, with 779 respondents plotting 2388 points. The results show for the first time that in addition to being a planning policy zone, Green Belts are important, and widely used open spaces for ‘everyday nature’, providing several cultural ecosystem services including recreation, connection with nature, sense of place and aesthetic value. Several factors were found to influence the supply of cultural ecosystem services in Green Belts, including proximity to urban areas, woodland land cover and access designations. Whereas most demand pressures on Green Belts were on public rights-of-way, nature designations and deciduous woodlands. Pervasive barriers inhibiting Green Belt’s full potential were identified including management issues, concerns over personal safety and lack of access. We argue that opportunities to further enhance the cultural ecosystem services provided Green Belts and peri-urban landscapes more broadly, not only come from planning policies themselves, but from the design and delivery of approaches integrating urban, rural and land-use policy silos. The findings have wider implications for policy including potential conflict with future development, and opportunities for greater access to greenspace

    Validation and development of extravascular bubble models for decompression sickness using collagen hydrogel

    Get PDF
    For over 200 years, the formation of bubbles in the body as a result of ambient pres- sure changes has been linked to decompression sickness (DCS). The mechanisms by which bubbles may lead to DCS are poorly understood, despite this long history of re- search. Mathematical modelling has played a key role in DCS prevention through the development of dive computer algorithms. Algorithms which incorporate mechanistic bubble models must make assumptions about a selected bubble property being statisti- cally related to the incidence of DCS. This poses a problem for the validation of such algorithms. Given the uncertain relationship between the mechanistic model output and the symptoms of DCS, direct bubble observation is required to validate the mechanistic portion of the model; such measurements, however, are not currently possible in vivo. The use of biomimetic in vitro models provides a new research avenue to investigate the causal mechanism as well address the validation problem currently faced. In the work described in this thesis an in vitro matrix model (collagen type I gel) was used to validate and further develop a 3D computational model of extravascular bubble dynamics. The collagen gels together with a microscope compatible pressure chamber provided the means to directly measure bubble formation and dynamics within the gels during decompression profiles. The effect of material and dive parameter vari- ations on bubble growth was first investigated and validated. Bubble-bubble interaction and coalescence were then analysed. Both the computational and experimental results of these analyses indicated that a model of bubble nucleation would be essential to model bubble dynamics accurately. The possible nature and distribution of nucleation sites was investigated. Options for incorporation of the nucleation findings are anal- ysed. Finally the influence of live cells bubble dynamics through oxygen consumption and the effect bubble proximity has on cell viability were investigated

    Using global datasets to estimate flood exposure at the city scale: an evaluation in Addis Ababa

    Get PDF
    Copyright \ua9 2024 Carr, Trigg, Haile, Bernhofen, Alemu, Bekele and Walsh.Introduction: Cities located in lower income countries are global flood risk hotspots. Assessment and management of these risks forms a key part of global climate adaptation efforts. City scale flood risk assessments necessitate flood hazard information, which is challenging to obtain in these localities because of data quality/scarcity issues, and the complex multi-source nature of urban flood dynamics. A growing array of global datasets provide an attractive means of closing these data gaps, but their suitability for this context remains relatively unknown. Methods: Here, we test the use of relevant global terrain, rainfall, and flood hazard data products in a flood hazard and exposure assessment framework covering Addis Ababa, Ethiopia. To conduct the tests, we first developed a city scale rain-on-grid hydrodynamic flood model based on local data and used the model results to identify buildings exposed to flooding. We then observed how the results of this flood exposure assessment changed when each of the global datasets are used in turn to drive the hydrodynamic model in place of its local counterpart. Results and discussion: Results are evaluated in terms of both the total number of exposed buildings, and the spatial distribution of exposure across Addis Ababa. Our results show that of the datasets tested, the FABDEM global terrain and the PXR global rainfall data products provide the most promise for use at the city scale in lower income countries

    Prevalence and risk factors of childhood diarrhea among wastewater irrigating urban farming households in Addis Ababa

    Get PDF
    \ua9 2023 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction Childhood diarrhea is one of the major contributors to the morbidity of under-five children in Ethiopia. Although researchers determine the risk factors varyingly, the exposure route to the pathogens is usually complicated. This study aims to investigate the prevalence and risk factors of diarrhea among children under the age of five among wastewater irrigation farming households in Addis Ababa, Ethiopia. Methods Cross-sectional study was conducted among 402 farming households from November 2021 to February 2022. Data was collected using a face-to-face interviewer-administered questionnaire. Stata version 14 software was used to analyze data. Factors associated with the prevalence of diarrhea was identified using binary logistic regression. Multivariable analysis was carried out to determine an adjusted odds ratio at a confidence level of 95% and level of significance at 0.05. Results The overall prevalence of under-five children diarrheal cases was 22.3%. The odds of diarrhea are associated with a multitude of variables. Major wastewater-related determinants associated with diarrhea are body washing with irrigation water [AOR: 37.7, 95%CI (3.1, 358)], contaminated cloth with irrigation water [AOR:10.8,95%CI(0.6, 205)], use of protective clothing during farm work [28.9,95%CI (3.9, 215)], use of farm work cloths at home [AOR: 31.7, 95%CI (4.4, 226)], and bringing unwashed farm tools to home [94 (5.7, 1575)]. Conclusion The high prevalence of under-five children diarrheal disease among wastewater irrigation households was strongly associated with factors related to occupational exposure. Thus, to decrease childhood diarrheal among urban agriculture farmers, appropriate precautions need to be taken

    Numerical groundwater flow modeling under future climate change in the Central Rift Valley Lakes Basin; Ethiopia

    Get PDF
    \ua9 2024 The AuthorsStudy area: Katar and Meki subbasins, Rift Valley Lakes Basin, Ethiopia.Study focus: This research was carried out to characterized the recharge mechanism and quantify the steady-state groundwater balance and its sensitivity to future climate change. A groundwater simulation model was constructed and calibrated using a hydro-geo spatial dataset. Three regional climate models were used to assess the potential impact of changes in future precipitation on the recharge rate and groundwater balance components.New Hydrogeological Insight: Groundwater potential assessment depends on accurate estimation of the recharge rate. Precipitation contributed 11.95% and 11.96% to groundwater recharge in the Katar and Meki subbasins, respectively. The steady-state numerical groundwater model was calibrated and the model performed in the ranges of R2: 0.95–0.99; RMSE: 16.17–25.18; and MAE: 12.69–24.55, demonstrating \u27excellent\u27 model performance. In particular, the model exhibited high sensitivity to changes in the recharge rate and horizontal hydraulic conductivity. Future change in precipitation caused a reduction in groundwater potential in the range of 6.24–40.32% by the 2040 s and 2070 s, respectively, in the Katar subbasin. Likewise, the Meki Subbasin will experience a reduction in groundwater potential in the range of 0.29–37.17% by the 2040 s and 2070 s, respectively. These results emphasize how crucial it is for future water resource development initiatives to take into account climate variability for sustainable groundwater development

    Does excitatory fronto-extracerebral tDCS lead to improved working memory performance?

    Get PDF
    Evidence suggests that excitatory transcranial direct current stimulation (tDCS) may improve performance on a wide variety of cognitive tasks. Due to the non-invasive and inexpensive nature of the method, harnessing its potential could be particularly useful for the treatment of neuropsychiatric illnesses involving cognitive dysfunction. However, questions remain regarding the efficacious stimulation parameters. Here, using a double-blind between-subjects design, we explored whether 1 mA excitatory (anodal) left dorsolateral prefrontal cortex stimulation with a contralateral extracerebral reference electrode, leads to enhanced working memory performance across two days, relative to sham stimulation. Participants performed the 3-back, a test of working memory, at baseline, and during and immediately following stimulation on two days, separated by 24-48 hours. Active stimulation did not significantly enhance performance versus sham over the course of the experiment. However, exploratory comparisons did reveal a significant effect of stimulation group on performance during the first stimulation phase only, with active stimulation recipients performing better than sham. While these results do not support the hypothesis that dorsolateral prefrontal cortex tDCS boosts working memory, they raise the possibility that its effects may be greatest during early learning stages

    Evaluating a new method of remote sensing for flood mapping in the urban and peri-urban areas: Applied to Addis Ababa and the Akaki catchment in Ethiopia

    Get PDF
    The Sentinel-1 SAR dataset provides the opportunity to monitor floods at unprecedentedly high spatial and temporal resolutions. However, the accuracy of the flood maps can be affected by the image polarization, the flood detection method used, and the reference data. This research compared change detection and histogram thresholding methods using co-polarization (VV) and cross-polarization (VH) images for flood mapping in the Akaki catchment, Ethiopia, where Addis Ababa city is located. Reference data for the accuracy assessment were collected on the satellite overpass date. A new method, Root of Normalized Image Difference (RNID), has been developed for change detection. Multi-temporal flood maps using the best performing method and image polarization were generated from April to November of 2017–2020. Better accuracy was observed when using the RNID method on the VH polarization image with an overall accuracy of 95% and a kappa coefficient of 0.86. Results showed that flooding in the Akaki commonly begins in May and recedes in November, but flooding was most frequent and widespread from June to September. Irrigated land and built-up area accounted for 1057 ​ha and 544 ​ha of the inundated area, respectively. Several major roads in the study area were also affected by the floods during this period. Our findings indicate that the S-1 images were very useful for flood inundation mapping, the new change detection method (RNID) performed better in urban and peri-urban flood mapping, but the accuracy of the flood map significantly varied with the flood detection method and the image polarization

    A qualitative exploration of the effect of visual field loss on daily life in home-dwelling stroke survivors

    Get PDF
    Objective: To explore the effect of visual field loss on the daily life of community-dwelling stroke survivors. Design: A qualitative interview study. Participants: Adult stroke survivors with visual field loss of at least six months’ duration. Methods: Semi-structured interviews were conducted with a non-purposive sample of 12 stroke survivors in their own homes. These were recorded, transcribed verbatim and analyzed with the framework method, using an inductive approach. Results: Two key analytical themes emerged. ‘Perception, experience and knowledge’ describes participant’s conflicted experience of having knowledge of their impaired vision but lacking perception of that visual field loss and operating under the assumption that they were viewing an intact visual scene when engaged in activities. Inability to recognize and deal with visual difficulties, and experiencing the consequences, contributed to their fear and loss of self-confidence. ‘Avoidance and adaptation’ were two typologies of participant response to visual field loss. Initially, all participants consciously avoided activities. Some later adapted to vision loss using self-directed head and eye scanning techniques. Conclusions: Visual field loss has a marked impact on stroke survivors. Stroke survivors lack perception of their visual loss in everyday life, resulting in fear and loss of confidence. Activity avoidance is a common response, but in some, it is replaced by self-initiated adaptive techniques

    Pharmacological profiling of the hemodynamic effects of cannabinoid ligands: a combined in vitro and in vivo approach

    Get PDF
    The receptors mediating the hemodynamic responses to cannabinoids are not clearly defined due to the multifarious pharmacology of many commonly used cannabinoid ligands. While both CB1 and TRPV1 receptors are implicated, G protein-coupled receptor 55 (GPR55) may also mediate some of the hemodynamic effects of several atypical cannabinoid ligands. The present studies attempted to unravel the pharmacology underlying the in vivo hemodynamic responses to ACEA (CB1 agonist), O-1602 (GPR55 agonist), AM251 (CB1 antagonist), and cannabidiol (CBD; GPR55 antagonist). Agonist and antagonist profiles of each ligand were determined by ligand-induced GTPγS binding in membrane preparations expressing rat and mouse CB1 and GPR55 receptors. Blood pressure responses to ACEA and O-1602 were recorded in anesthetized and conscious mice (wild type, CB1−/− and GPR55−/−) and rats in the absence and presence of AM251 and CBD. ACEA demonstrated GTPγS activation at both receptors, while O-1602 only activated GPR55. AM251 exhibited antagonist activity at CB1 and agonist activity at GPR55, while CBD demonstrated selective antagonist activity at GPR55. The depressor response to ACEA was blocked by AM251 and attenuated by CBD, while O-1602 did not induce a depressor response. AM251 caused a depressor response that was absent in GPR55−/− mice but enhanced by CBD, while CBD caused a small vasodepressor response that persisted in GPR55−/− mice. Our findings show that assessment of the pharmacological profile of receptor activation by cannabinoid ligands in in vitro studies alongside in vivo functional studies is essential to understand the role of cannabinoids in hemodynamic control

    Fate of Biological Control Introductions: Monitoring an Australian Fungal Pathogen of Grasshoppers in North America

    Get PDF
    In North America there are two generally recognized pathotypes (pathotypes 1 and 2) of the fungus Entomophaga grylli which show host-preferential infection of grasshopper subfamilies. Pathotype 3, discovered in Austra- lia,hasabroadergrasshopperhostrangeandwasconsidered to be a good biocontrol agent. Between 1989 and 1991 patho- type3wasintroducedattwofieldsitesinNorthDakota.Since resting spores are morphologically indistinguishable among pathotypes, we used pathotype-specific DNA probes to con- firm pathotype identification in E. grylli-infected grasshop- pers collected at the release sites in 1992, 1993, and 1994. In 1992, up to 23% of E. grylli-infected grasshoppers of the subfamilies Melanoplinae, Oedipodinae, and Gomphocerinae were infected by pathotype 3,with no infections \u3e1 km from the release sites. In 1993, pathotype 3 infections declined to 1.7%. In 1994 grasshopper populations were low and no pathotype3infectionswerefound.Thefrequencyofpathotype 3 infection has declined to levels where its long-term survival in North America is questionable. Analyses of biocontrol releases are critical to evaluating the environmental risks associatedwiththeseecologicalmanipulations,andmolecular probesarepowerfultoolsformonitoringbiocontrolreleases
    • 

    corecore