1,300 research outputs found

    On-chip III-V monolithic integration of heralded single photon sources and beamsplitters

    Full text link
    We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photons, one of which is used to herald the injection of its twin into the beamsplitter. We use this configuration to implement an integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order correlation gher(2)(0)=0.10±0.02g^{(2)}_{\rm her}(0)=0.10 \pm 0.02 that confirms single-photon operation. The demonstrated generation and manipulation of quantum states on a single III-V semiconductor chip opens promising avenues towards real-world applications in quantum information

    A 1.3 cm Line Survey toward Orion KL

    Full text link
    Orion KL has served as a benchmark for spectral line searches throughout the (sub)millimeter regime. The main goal is to systematically study spectral characteristics of Orion KL in the 1.3 cm band. We carried out a spectral line survey (17.9 GHz to 26.2 GHz) with the Effelsberg-100 m telescope towards Orion KL. We find 261 spectral lines, yielding an average line density of about 32 spectral features per GHz above 3σ\sigma. The identified lines include 164 radio recombination lines (RRLs) and 97 molecular lines. A total of 23 molecular transitions from species known to exist in Orion KL are detected for the first time in the interstellar medium. Non-metastable 15NH3 transitions are detected in Orion KL for the first time. Based on the velocity information of detected lines and the ALMA images, the spatial origins of molecular emission are constrained and discussed. A narrow feature is found in SO2 (81,772,68_{1,7}-7_{2,6}), possibly suggesting the presence of a maser line. Column densities and fractional abundances relative to H2 are estimated for 12 molecules with LTE methods. Rotational diagrams of non-metastable 14NH3 transitions with J=K+1 to J=K+4 yield different results; metastable 15NH3 is found to have a higher excitation temperature than non-metastable 15NH3, indicating that they may trace different regions. Elemental and isotopic abundance ratios are estimated: 12C/13C=63+-17, 14N/15N=100+-51, D/H=0.0083+-0.0045. The dispersion of the He/H ratios derived from Hα\alpha/Heα\alpha pairs to Hδ\delta/Heδ\delta pairs is very small, which is consistent with theoretical predictions that the departure coefficients bn factors for hydrogen and helium are nearly identical. Based on a non-LTE code neglecting excitation by the infrared radiation field and a likelihood analysis, we find that the denser regions have lower kinetic temperature, which favors an external heating of the Hot Core.Comment: 70 pages, 26 figures, 12 tables, accepted for publication in A&A. Figs. 1, 2, 8, 9 have been downsize

    Dissipation of Quasiclassical Turbulence in Superfluid 4^4He

    Get PDF
    We compare the decay of turbulence in superfluid 4^4He produced by a moving grid to the decay of turbulence created by either impulsive spin-down to rest or by intense ion injection. In all cases the vortex line density LL decays at late time tt as Lt3/2L \propto t^{-3/2}. At temperatures above 0.8 K, all methods result in the same rate of decay. Below 0.8 K, the spin-down turbulence maintains initial rotation and decays slower than grid turbulence and ion-jet turbulence. This may be due to a decoupling of the large-scale superfluid flow from the normal component at low temperatures, which changes its effective boundary condition from no-slip to slip.Comment: Main article: 5 pages, 3 figures. Supplemental material: 4 pages, 3 figures. Accepted for publication in Physical Review Letter

    Simplified Quantum Process Tomography

    Full text link
    We propose and evaluate experimentally an approach to quantum process tomography that completely removes the scaling problem plaguing the standard approach. The key to this simplification is the incorporation of prior knowledge of the class of physical interactions involved in generating the dynamics, which reduces the problem to one of parameter estimation. This allows part of the problem to be tackled using efficient convex methods, which, when coupled with a constraint on some parameters allows globally optimal estimates for the Kraus operators to be determined from experimental data. Parameterising the maps provides further advantages: it allows the incorporation of mixed states of the environment as well as some initial correlation between the system and environment, both of which are common physical situations following excitation of the system away from thermal equilibrium. Although the approach is not universal, in cases where it is valid it returns a complete set of positive maps for the dynamical evolution of a quantum system at all times.Comment: Added references to interesting related work by Bendersky et a

    Detector-Agnostic Phase-Space Distributions

    Full text link
    The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof to account for their particular properties and imperfections. To overcome these obstacles, we derive and implement a measurement scheme that enables a reconstruction of phase-space distributions for arbitrary states whose functionality does not depend on the knowledge of the detectors, thus defining the notion of detector-agnostic phase-space distributions. Our theory presents a generalization of well-known phase-space quasiprobability distributions, such as the Wigner function. We implement our measurement protocol, using state-of-the-art transition-edge sensors without performing a detector characterization. Based on our approach, we reveal the characteristic features of heralded single- and two-photon states in phase space and certify their nonclassicality with high statistical significance

    A necklace of dense cores in the high-mass star forming region G35.20-0.74N: ALMA observations

    Get PDF
    The present study aims at characterizing the massive star forming region G35.20N, which is found associated with at least one massive outflow and contains multiple dense cores, one of them recently found associated with a Keplerian rotating disk. We used ALMA to observe the G35.20N region in the continuum and line emission at 350 GHz. The observed frequency range covers tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to the large-scale molecular outflow detected in the region, and fragmented into a number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear regularly spaced with a separation of 0.023 pc. The emission of dense gas tracers such as H13CO+ or C17O is extended and coincident with the dust elongated structure. The three strongest dust cores show emission of complex organic molecules characteristic of hot cores, with temperatures around 200 K, and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH. The two cores with highest mass (cores A and B) show coherent velocity fields, with gradients almost aligned with the dust elongated structure. Those velocity gradients are consistent with Keplerian disks rotating about central masses of 4-18 Msun. Perpendicular to the velocity gradients we have identified a large-scale precessing jet/outflow associated with core B, and hints of an east-west jet/outflow associated with core A. The elongated dust structure in G35.20N is fragmented into a number of dense cores that may form massive stars. Based on the velocity field of the dense gas, the orientation of the magnetic field, and the regularly spaced fragmentation, we interpret this elongated structure as the densest part of a 1D filament fragmenting and forming massive stars.Comment: 24 pages, 26 figures, accepted for publication in Astronomy and Astrophysics (abstract modified to fit arXiv restrictions

    ATLASGAL - towards a complete sample of massive star forming clumps

    Get PDF
    By matching infrared-selected, massive young stellar objects (MYSOs) and compact HII regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ~1000 embedded young massive stars between 280{ring operator} <lPeer reviewedFinal Accepted Versio

    Interfacing GHz-bandwidth heralded single photons with a room-temperature Raman quantum memory

    Full text link
    Photonics is a promising platform for quantum technologies. However, photon sources and two-photon gates currently only operate probabilistically. Large-scale photonic processing will therefore be impossible without a multiplexing strategy to actively select successful events. High time-bandwidth-product quantum memories - devices that store and retrieve single photons on-demand - provide an efficient remedy via active synchronisation. Here we interface a GHz-bandwidth heralded single-photon source and a room-temperature Raman memory with a time-bandwidth product exceeding 1000. We store heralded single photons and observe a clear influence of the input photon statistics on the retrieved light, which agrees with our theoretical model. The preservation of the stored field's statistics is limited by four-wave-mixing noise, which we identify as the key remaining challenge in the development of practical memories for scalable photonic information processing

    NH_3(1_0-0_0) in the pre-stellar core L1544

    Get PDF
    Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the dense and cold gas present in pre-stellar cores. The NH_3 rotational transition detected with Herschel-HIFI provides a unique combination of sensitivity and spectral resolution to further investigate physical and chemical processes in pre-stellar cores. Here we present the velocity-resolved Herschel-HIFI observations of the ortho-NH_3(1_0-0_0) line at 572 GHz and study the abundance profile of ammonia across the pre-stellar core L1544 to test current theories of its physical and chemical structure. Recently calculated collisional coefficients have been included in our non-LTE radiative transfer code to reproduce Herschel observations. A gas-grain chemical model, including spin-state chemistry and applied to the (static) physical structure of L1544 is also used to infer the abundance profile of ortho-NH_3 . The hyperfine structure of ortho-NH_3(1_0-0_0) is resolved for the first time in space. All the hyperfine components are strongly self-absorbed. The profile can be reproduced if the core is contracting in quasi-equilibrium, consistent with previous work, and if the NH_3 abundance is slightly rising toward the core centre, as deduced from previous interferometric observations of para-NH_3(1,1). The chemical model overestimates the NH_3 abundance at radii between ~ 4000 and 15000 AU by about two orders of magnitude and underestimates the abundance toward the core centre by more than one order of magnitude. Our observations show that chemical models applied to static clouds have problems in reproducing NH_3 observations.Comment: accepted for publication in A&A Letter

    Nature of two massive protostellar candidates: IRAs 21307+5049 and IRAS 22172+5549

    Full text link
    We present observations of continuum and molecular lines towards the protostar candidates IRAS 21307+5049 and IRAS 22172+5549. Single-dish maps in the 12CO(2--1), C18O(2--1), HCO+(1--0) lines and sub-mm continuum are compared with interferometric maps in the 12CO(1--0) line and 3 mm continuum, and with mid- and near-infrared images. A plausible interpretation of our data based on the continuum maps and spectral energy distributions is that two components are present: a compact molecular core, responsible for the continuum emission at wavelengths longer than ~25 \mum, and a cluster of stars located close to the center of the core, but not spatially coincident with it, responsible for the emission at shorter wavelengths. The core is approximately located at the center of the associated molecular outflow, detected for both sources in the 12CO(1--0) and (2--1) lines. The cores have masses of ~50 M_{\odot}, and luminosities of ~10^{3} L_{\odot}. The outflows parameters are consistent with those typically found in high-mass young stellar objects. Our results support the hypothesis that in these sources the luminosity is dominated by accretion rather than by nuclear burning. We conclude that the sources embedded inside the cores are likely protostars with mass ~5-8 M_{\odot}.Comment: 19 pages, 17 figure
    corecore