786 research outputs found

    New attempts to understand nanodiamond stardust

    Get PDF
    We report on a concerted effort aimed at understanding the origin and history of the pre-solar nanodiamonds in meteorites including the astrophysical sources of the observed isotopic abundance signatures. This includes measurement of light elements by secondary ion mass spectrometry (SIMS), analysis of additional heavy trace elements by accelerator mass spectrometry (AMS) and dynamic calculations of r-process nucleosynthesis with updated nuclear properties. Results obtained indicate: a) there is no evidence for the former presence of now extinct 26Al and 44Ti in our diamond samples other than what can be attributed to silicon carbide and other "impurities"; this does not offer support for a supernova (SN) origin but neither does it negate it; b) analysis by AMS of platinum in "bulk diamond" yields an overabundance of r-only 198Pt that at face value seems more consistent with the neutron burst than with the separation model for the origin of heavy trace elements in the diamonds, although this conclusion is not firm given analytical uncertainties; c) if the Xe-H pattern was established by an unadulterated r-process, it must have been a strong variant of the main r-process, which possibly could also account for the new observations in platinum.Comment: Workshop on Astronomy with Radioactvities VII; Publications of the Astronomical Society of Australia, accepte

    Determination of the stellar (n,gamma) cross section of 40Ca with accelerator mass spectrometry

    Full text link
    The stellar (n,gamma) cross section of 40Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing gamma-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the 7Li(p,n)7Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic 40Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, 40Ca can also play a secondary role as "neutron poison" for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of 30 keV= 5.73+/-0.34 mb.Comment: 8 pages, 3 figure

    Measurement of the radiative capture cross section of the s-process branching points 204Tl and 171Tm at the n-TOF facility (CERN)

    Get PDF
    The neutron capture cross section of some unstable nuclei is especially relevant for s-process nucleosynthesis studies. This magnitude is crucial to determine the local abundance pattern, which can yield valuable information of the s-process stellar environment. In this work we describe the neutron capture (n,γ) measurement on two of these nuclei of interest, 204Tl and 171Tm, from target production to the final measurement, performed successfully at the n_TOF facility at CERN in 2014 and 2015. Preliminary results on the ongoing experimental data analysis will also be shown. These results include the first ever experimental observation of capture resonances for these two nuclei.The authors acknowledge financial support by the Spanish FPA2014-52823-C2-2-P project, by the EC Marie Curie Action “NeutAndalus” (FP7-PEOPLE-2012-CIG- 334315), by the ARGOS scholarship of the Spanish Nuclear Safety Council (CSN) and the Universitat Politècnica de Catalunya, and by the University of Sevilla via the VI PPIT-US program

    Generalized isothermic lattices

    Full text link
    We study multidimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isthermic lattices using Steiner's projective structure of conics and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem.Comment: 19 pages, 11 figures; v2. some typos corrected; v3. new references added, higlighted similarities and differences with recent papers on the subjec

    Computational and experimental druggability assessment of human DNA glycosylases

    Get PDF
    Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA

    Nuclear data from AMS & nuclear data for AMS - some examples

    Get PDF
    We summarize some recent cross-section measurements using accelerator mass spectrometry (AMS). AMS represents an ultra-sensitive technique for measuring a limited, but steadily increasing number of longer-lived radionuclides. This method implies a two-step procedure with sample activation and subsequent AMS measurement. Applications include nuclear astrophysics, nuclear technology (nuclear fusion, nuclear fission and advanced reactor concepts and radiation dose estimations). A series of additional applications involves cosmogenic radionuclides in environmental, geological and extraterrestrial studies. Lack of information exists for a list of nuclides as pointed out by nuclear data requests. An overview of some recent measurements is given and the method is exemplified for some specific neutron-induced reactions.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Nuclear Data from AMS & Nuclear Data for AMS -some examples

    Get PDF
    We summarize some recent cross-section measurements using accelerator mass spectrometry (AMS). AMS represents an ultra-sensitive technique for measuring a limited, but steadily increasing number of longer-lived radionuclides. This method implies a two-st

    Evaluation of 3D-Jury on CASP7 models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>3D-Jury, the structure prediction consensus method publicly available in the Meta Server <url>http://meta.bioinfo.pl/</url>, was evaluated using models gathered in the 7<sup><it>th </it></sup>round of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7). 3D-Jury is an automated expert process that generates protein structure meta-predictions from sets of models obtained from partner servers.</p> <p>Results</p> <p>The performance of 3D-Jury was analysed for three aspects. First, we examined the correlation between the 3D-Jury score and a model quality measure: the number of correctly predicted residues. The 3D-Jury score was shown to correlate significantly with the number of correctly predicted residues, the correlation is good enough to be used for prediction. 3D-Jury was also found to improve upon the competing servers' choice of the best structure model in most cases. The value of the 3D-Jury score as a generic reliability measure was also examined. We found that the 3D-Jury score separates bad models from good models better than the reliability score of the original server in 27 cases and falls short of it in only 5 cases out of a total of 38. We report the release of a new Meta Server feature: instant 3D-Jury scoring of uploaded user models.</p> <p>Conclusion</p> <p>The 3D-Jury score continues to be a good indicator of structural model quality. It also provides a generic reliability score, especially important for models that were not assigned such by the original server. Individual structure modellers can also benefit from the 3D-Jury scoring system by testing their models in the new instant scoring feature <url>http://meta.bioinfo.pl/compare_your_model_example.pl</url> available in the Meta Server.</p
    • …
    corecore