274 research outputs found

    Oktet

    Get PDF
    David Foster Wallace: Oktet

    Set fra Mrs. Thompsons stue

    Get PDF
    David Foster Wallace: Set fra Mrs. Thompsons stu

    The role of bone sialoprotein in the tendon-bone insertion

    Get PDF
    © 2016 International Society of Matrix Biology. Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp-/- mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp-/- mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp-/- patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, Picrosirius Red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp-/- mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Early experience of COVID-19 vaccination in adults with systemic rheumatic diseases : Results from the COVID-19 Global Rheumatology Alliance Vaccine Survey

    Get PDF
    Funding Information: Competing interests SES has received funding from the Vasculitis Foundation and the Vasculitis Clinical Research Consortium unrelated to this work. JL has received research grant funding from Pfizer unrelated to this work. ES is a Board Member of the Canadian Arthritis Patient Alliance, a patient run, volunteer-based organisation whose activities are primarily supported by independent grants from pharmaceutical companies. MP was supported by a Rheumatology Research Foundation Scientist Development grant. DA-R is a Scientific Advisor for GlaxoSmithKilne unrelated to this work. FB reports personal fees from Boehringer, Bone Therapeutics, Expanscience, Galapagos, Gilead, GSK, Merck Sereno, MSD, Nordic, Novartis, Pfizer, Regulaxis, Roche, Sandoz, Sanofi, Servier, UCB, Peptinov, TRB Chemedica and 4P Pharma outside of the submitted work. No funding relevant to this manuscript. RC: speakers bureau for Janssen, Roche, Sanofi, AbbVie. KD reports no COI-unpaid volunteer president of the Autoinflammatory Alliance. Any grants or funding from pharma is received by the non-profit organisation only. CLH received funding under a sponsored research agreement unrelated to the data in the paper from Vifor Pharmaceuticals. LeK has received a research grant from Lilly unrelated to this work. AHJK participated in consulting, advisory board or speaker's bureau for Alexion Pharmaceuticals, Aurinia Pharmaceuticals, Annexon Biosciences, Exagen Diagnostics and GlaxoSmithKilne and received funding under a sponsored research agreement unrelated to the data in the paper from GlaxoSmithKline. JSingh has received consultant fees from Crealta/ Horizon, Medisys, Fidia, PK Med, Two Labs, Adept Field Solutions, Clinical Care Options, Clearview Healthcare Partners, Putnam Associates, Focus Forward, Navigant Consulting, Spherix, MedIQ, Jupiter Life Science, UBM, Trio Health, Medscape, WebMD and Practice Point Communications; and the National Institutes of Health and the American College of Rheumatology. JSingh owns stock options in TPT Global Tech, Vaxart Pharmaceuticals and Charlotte’s Web Holdings. JSingh previously owned stock options in Amarin, Viking and Moderna Pharmaceuticals. JSingh is on the speaker’s bureau of Simply Speaking. JSingh is a member of the executive of Outcomes Measures in Rheumatology (OMERACT), an organisation that develops outcome measures in rheumatology and receives arms-length funding from eight companies. JSingh serves on the FDA Arthritis Advisory Committee. JSingh is the chair of the Veterans Affairs Rheumatology Field Advisory Committee. JSingh is the editor and the Director of the University of Alabama at Birmingham (UAB) Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis. NSingh is supported by funding from the Rheumatology Research Foundation Investigator Award and the American Heart Association. MFU-G has received research support from Pfizer and Janssen, unrelated to this work. SB reports personal fees from Novartis, AbbVie, Pfizer and Horizon Pharma, outside the submitted work. RG reports personal fees from AbbVie New Zealand, Cornerstones, Janssen New Zealand and personal fees and non-financial support Pfizer New Zealand (all <US$10 000) outside the submitted work. PMM reports personal fees from AbbVie, Eli Lilly, Janssen, Novartis, Pfizer and UCB, grants and personal fees from Orphazyme, outside the submitted work. PCR reports personal fees from AbbVie, Gilead, Lilly and Roche, grants and personal fees from Novartis, UCB Pharma, Janssen and Pfizer and non-financial support from BMS, outside the submitted work. PS reports honoraria from Social media editor for @ACR_Journals, outside the submitted work. ZSW reports grants from NIH, BMS and Principia/ Sanofi and personal fees from Viela Bio and MedPace, outside the submitted work. JY reports personal fees from Pfizer and Eli Lilly, and grants and personal fees from AstraZeneca, outside the submitted work. MJL reports grants from American College of Rheumatology, during the conduct of the study and consulting fees from AbbVie, Amgen, Actelion, Boehringer Ingelheim, BMS, Celgene, Gilead, J&J, Mallinckrodt, Novartis, Pfizer, Roche, Sandoz, Sanofi, Sobi and UCB, outside the submitted work. LGR was supported by the Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS; ZIAES101074) of the National Institutes of Health. JH reports grants from Childhood Arthritis and Rheumatology Research Alliance (CARRA) and Rheumatology Research Alliance, and personal fees from Novartis, Pfizer and Biogen, outside the submitted work. JSimard received research grant funding from the National Institutes of Health unrelated to this work (NIAMS: R01 AR077103 and NIAID R01 AI154533). JSparks has performed consultancy for AbbVie, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead, Inova Diagnostics, Optum and Pfizer unrelated to this work. Funding Information: Funding This study was supported by the European Alliance of Associations for Rheumatology and American College of Rheumatology Research and Education Foundation. Dr. Lisa Rider's involvement was supported in part by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences. Publisher Copyright: © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.Background. We describe the early experiences of adults with systemic rheumatic disease who received the COVID-19 vaccine. Methods From 2 April to 30 April 2021, we conducted an online, international survey of adults with systemic rheumatic disease who received COVID-19 vaccination. We collected patient-reported data on clinician communication, beliefs and intent about discontinuing disease-modifying antirheumatic drugs (DMARDs) around the time of vaccination, and patient-reported adverse events after vaccination. Results We analysed 2860 adults with systemic rheumatic diseases who received COVID-19 vaccination (mean age 55.3 years, 86.7% female, 86.3% white). Types of COVID-19 vaccines were Pfizer-BioNTech (53.2%), Oxford/AstraZeneca (22.6%), Moderna (21.3%), Janssen/Johnson & Johnson (1.7%) and others (1.2%). The most common rheumatic disease was rheumatoid arthritis (42.3%), and 81.2% of respondents were on a DMARD. The majority (81.9%) reported communicating with clinicians about vaccination. Most (66.9%) were willing to temporarily discontinue DMARDs to improve vaccine efficacy, although many (44.3%) were concerned about rheumatic disease flares. After vaccination, the most reported patient-reported adverse events were fatigue/somnolence (33.4%), headache (27.7%), muscle/joint pains (22.8%) and fever/chills (19.9%). Rheumatic disease flares that required medication changes occurred in 4.6%. Conclusion. Among adults with systemic rheumatic disease who received COVID-19 vaccination, patient-reported adverse events were typical of those reported in the general population. Most patients were willing to temporarily discontinue DMARDs to improve vaccine efficacy. The relatively low frequency of rheumatic disease flare requiring medications was reassuring.publishersversionPeer reviewe

    Prolonged COVID-19 symptom duration in people with systemic autoimmune rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance Vaccine Survey

    Get PDF
    OBJECTIVE: We investigated prolonged COVID-19 symptom duration, defined as lasting 28 days or longer, among people with systemic autoimmune rheumatic diseases (SARDs). METHODS: We analysed data from the COVID-19 Global Rheumatology Alliance Vaccine Survey (2 April 2021-15 October 2021) to identify people with SARDs reporting test-confirmed COVID-19. Participants reported COVID-19 severity and symptom duration, sociodemographics and clinical characteristics. We reported the proportion experiencing prolonged symptom duration and investigated associations with baseline characteristics using logistic regression. RESULTS: We identified 441 respondents with SARDs and COVID-19 (mean age 48.2 years, 83.7% female, 39.5% rheumatoid arthritis). The median COVID-19 symptom duration was 15 days (IQR 7, 25). Overall, 107 (24.2%) respondents had prolonged symptom duration (≥28 days); 42/429 (9.8%) reported symptoms lasting ≥90 days. Factors associated with higher odds of prolonged symptom duration included: hospitalisation for COVID-19 vs not hospitalised and mild acute symptoms (age-adjusted OR (aOR) 6.49, 95% CI 3.03 to 14.1), comorbidity count (aOR 1.11 per comorbidity, 95% CI 1.02 to 1.21) and osteoarthritis (aOR 2.11, 95% CI 1.01 to 4.27). COVID-19 onset in 2021 vs June 2020 or earlier was associated with lower odds of prolonged symptom duration (aOR 0.42, 95% CI 0.21 to 0.81). CONCLUSION: Most people with SARDs had complete symptom resolution by day 15 after COVID-19 onset. However, about 1 in 4 experienced COVID-19 symptom duration 28 days or longer; 1 in 10 experienced symptoms 90 days or longer. Future studies are needed to investigate the possible relationships between immunomodulating medications, SARD type/flare, vaccine doses and novel viral variants with prolonged COVID-19 symptoms and other postacute sequelae of COVID-19 among people with SARDs

    Crop Updates 2001 - Grower Booklet

    Get PDF
    1. Strategies for leaf disease management in wheat, Jatinderpal Bhathal1, Cameron Weeks2, Kith Jayasena1 and Robert Loughman1, 1Agriculture Western Australia. 2Mingenew-Irwin Group Inc. 2. Burn stubble windrows: to diagnose soil fertility problems, Bill Bowden, Chris Gazey and Ross Brennan, Agriculture Western Australia 3. Rainfall – what happened in 2000 and the prospects for 2001, Ian Foster, Agriculture Western Australia 4. Strategies for leaf disease management in malting barley, K. Jayasena1, Q. Knight2 and R. Loughman1, 1Agriculture Western Australia, 2IAMA Agribusiness 5. Planning your cropping program in season 2001, Dr Ross Kingwell, Agriculture Western Australia and University of Western Australia 6. Rotational crops and varieties for management of root lesion nematodes in Western Australia, S.B. Sharma, S. Kelly and R. Loughman, Crop Improvement Institute, Agriculture Western Australia 7. When and where to grow oats, Glenn McDonald, Agriculture Western Australia 8. Managing Gairdner barley for quality, Kevin Young and Blakely Paynter, Agriculture Western Australia FARMING SYSTEMS, PASTURES AND WEEDS 9.Evaluation of pasture species for phase pasture systems, Keith Devenish, Agriculture Western Australia 10. Competitiveness of wild radish in a wheat – lupin rotation, Abul Hashem, Nerys Wilkins, and Terry Piper, Agriculture Western Australia 11. Can we eradicate barley grass? Sally Peltzer, Agriculture Western Australia 12. Short term pasture phase for weed control, Clinton Revell and Candy Hudson, Agriculture Western Australia 13. Herbicide tolerance of some annual pasture legumes adapted to coarse textured sandy soils, Clinton Revell and Ian Rose, Agriculture Western Australia 14. Integrated weed management: Cadoux, Alexandra Wallace, Agriculture Western Australia LUPINS 15. Inter-row knockdowns for profitable lupins, Paul Blackwell, Agriculture Western Australia and Miles Obst, farmer, Mingenew 16.. Wild radish – the implications for our rotations, Dr David Bowran, Centre for Cropping Systems 17. Lupin variety performance: Are you making the most of it? Bevan J. Buirchell, Senior Plant Breeder, Agriculture Western Australia 18. Anthracnose in lupins – understanding the risk, Moin Salam, Art Diggle, Geoff Thomas, Mark Sweetingham and Bill O’Neill, Agriculture Western Australia OILSEEDS 19. Effect of stubble, seeding technique and seed size on crop establishment and yield of canola, Rafiul Alam, Glen Riethmuller and Greg Hamilton, Agriculture Western Australia 20. Canola – More responses to lime, Chris Gazey and Paul Carmody,Agriculture Western Australia 22. Performance of new canola varieties in AGWEST variety trials in 2000, G. Walton, Crop Improvement Institute, Agriculture Western Australia PULSES 23. The ascochyta management package for 2001, B. MacLeod, Agriculture Western Australia 24. Herbicide tolerance of new field pea varieties and lines, M. Seymour, H. Dhammu, T. Piper, D. Nicholson, M. D\u27Antuono, Agriculture Western Australi

    AMI observations of northern supernova remnants at 14-18 GHz

    Full text link
    We present observations between 14.2 and 17.9 GHz of 12 reported supernova remnants (SNRs) made with the Arcminute Microkelvin Imager Small Array (AMI SA). In conjunction with data from the literature at lower radio frequencies, we determine spectra of these objects. For well-studied SNRs (Cas A, Tycho's SNR, 3C58 and the Crab Nebula), the results are in good agreement with spectra based on previous results. For the less well-studied remnants the AMI SA observations provide higher-frequency radio observations than previously available, and better constrain their radio spectra. The AMI SA results confirm a spectral turnover at ~11 GHz for the filled-centre remnant G74.9+1.2. We also see a possible steepening of the spectrum of the filled-centre remnant G54.1+0.3 within the AMI SA frequency band compared with lower frequencies. We confirm that G84.9+0.5, which had previously been identified as a SNR, is rather an HII region and has a flat radio spectrum.Comment: 12 pages, 24 figures, accepted MNRA
    corecore