131 research outputs found
A patient with abnormalities of the coronary arteries and non-compaction of the left ventricular myocardium resulting in ischaemic heart disease symptoms
Left ventricular non-compaction (LVNC) is a rare cardiomyopathy that results from unsettled embryogenesis of myocardium. It is morphologically characterised by the presence of non-compacted, this is hypertrabeculated, myocardium of the left ventricle with deep endocardial recesses. The clinical spectrum of symptoms is very wide — from asymptomatic patients through the cases of heart failure to the patients requiring heart transplantation. The diagnosis is most frequently based on the echocardiography. LVNC is often coexisted with other heart defects and coronary artery abnormalities. We described a case of a 58-year-old man with LVNC and coronary artery anomalies
Satellite Constellation Internet Affordability and Need
Large satellite constellations in low-Earth orbit seek to be the infrastructure for global broadband Internet and other telecommunication needs. We briefly review the impacts of satellite constellations on astronomy and show that the Internet service offered by these satellites will primarily target populations where it is unaffordable, not needed, or both. The harm done by tens to hundreds of thousands of low-Earth orbit satellites to astronomy, stargazers worldwide, and the environment is not acceptable
White-light flares on cool stars in the Kepler Quarter 1 Data
We present the results of a search for white light flares on the ~23,000 cool
dwarfs in the Kepler Quarter 1 long cadence data. We have identified 373
flaring stars, some of which flare multiple times during the observation
period. We calculate relative flare energies, flare rates and durations, and
compare these with the quiescent photometric variability of our sample. We find
that M dwarfs tend to flare more frequently but for shorter durations than K
dwarfs, and that they emit more energy relative to their quiescent luminosity
in a given flare than K dwarfs. Stars that are more photometrically variable in
quiescence tend to emit relatively more energy during flares, but variability
is only weakly correlated with flare frequency. We estimate distances for our
sample of flare stars and find that the flaring fraction agrees well with other
observations of flare statistics for stars within 300 pc above the Galactic
Plane. These observations provide a more rounded view of stellar flares by
sampling stars that have not been pre-selected by their activity, and are
informative for understanding the influence of these flares on planetary
habitability.Comment: 42 pages, 10 figures, 2 tables; Accepted for publication in the
Astronomical Journa
Photometric Variability in Kepler Target Stars: The Sun Among Stars -- A First Look
The Kepler mission provides an exciting opportunity to study the lightcurves
of stars with unprecedented precision and continuity of coverage. This is the
first look at a large sample of stars with photometric data of a quality that
has heretofore been only available for our Sun. It provides the first
opportunity to compare the irradiance variations of our Sun to a large cohort
of stars ranging from vary similar to rather different stellar properties, at a
wide variety of ages. Although Kepler data is in an early phase of maturity,
and we only analyze the first month of coverage, it is sufficient to garner the
first meaningful measurements of our Sun's variability in the context of a
large cohort of main sequence stars in the solar neighborhood. We find that
nearly half of the full sample is more active than the active Sun, although
most of them are not more than twice as active. The active fraction is closer
to a third for the stars most similar to the Sun, and rises to well more than
half for stars cooler than mid K spectral types.Comment: 13 pages, 4 figures, accepted to ApJ Letter
The Kepler Follow-up Observation Program
The Kepler Mission was launched on March 6, 2009 to perform a photometric
survey of more than 100,000 dwarf stars to search for terrestrial-size planets
with the transit technique. Follow-up observations of planetary candidates
identified by detection of transit-like events are needed both for
identification of astrophysical phenomena that mimic planetary transits and for
characterization of the true planets and planetary systems found by Kepler. We
have developed techniques and protocols for detection of false planetary
transits and are currently conducting observations on 177 Kepler targets that
have been selected for follow-up. A preliminary estimate indicates that between
24% and 62% of planetary candidates selected for follow-up will turn out to be
true planets.Comment: 12 pages, submitted to the Astrophysical Journal Letter
Improved age constraints for the AB Dor quadruple system - The binary nature of AB Dor B
We present resolved NACO photometry of the close binary AB Dor B in H- and
Ks-band. AB Dor B is itself known to be a wide binary companion to AB Dor A,
which in turn has a very low-mass close companion named AB Dor C. These four
known components make up the young and dynamically interesting system AB Dor,
which will likely become a benchmark system for calibrating theoretical
pre-main sequence evolutionary mass tracks for low-mass stars. However, for
this purpose the actual age has to be known, and this subject has been a matter
of discussion in the recent scientific literature. We compare our resolved
photometry of AB Dor Ba and Bb with theoretical and empirical isochrones in
order to constrain the age of the system. This leads to an age estimate of
about 50 to 100 Myr. We discuss the implications of such an age range for the
case of AB Dor C, and compare with other results in the literature.Comment: 7 pages, 6 figures, accepted for publication in A&
Recommended from our members
On-Road and In-Laboratory Testing to Demonstrate Effects of ULSD, B20 and B99 on a Retrofit Urea-SCR Aftertreatment System
Emissions changes for a 2005 International tractor operating on low-sulfur diesel and biodiesel in Santa Monica were measured to demonstrate performance and impacts of selective catalytic reduction
Cataclysmic Variables from SDSS II. The Second Year
The first full year of operation following the commissioning year of the
Sloan Digital Sky Survey has revealed a wide variety of newly discovered
cataclysmic variables. We show the SDSS spectra of forty-two cataclysmic
variables observed in 2002, of which thirty-five are new classifications, four
are known dwarf novae (CT Hya, RZ Leo, T Leo and BZ UMa), one is a known CV
identified from a previous quasar survey (Aqr1) and two are known ROSAT or
FIRST discovered CVs (RX J09445+0357, FIRST J102347.6+003841). The SDSS
positions, colors and spectra of all forty-two systems are presented. In
addition, the results of follow-up studies of several of these objects identify
the orbital periods, velocity curves and polarization that provide the system
geometry and accretion properties. While most of the SDSS discovered systems
are faint (>18th mag) with low accretion rates (as implied from their spectral
characteristics), there are also a few bright objects which may have escaped
previous surveys due to changes in the mass transfer rate.Comment: Accepted for publication in The Astronomical Journal, Vol. 126, Sep.
2003, 44 pages, 25 figures (now with adjacent captions), AASTeX v5.
- …