687 research outputs found
The \chi Factor: Determining the Strength of Activity in Low Mass Dwarfs
We describe a new, distance-independent method for calculating the magnetic
activity strength in low mass dwarfs, L_{H\alpha}/L_{bol}. Using a
well-observed sample of nearby stars and cool standards spanning spectral type
M0.5 to L0, we compute ``\chi'', the ratio between the continuum flux near
H-alpha and the bolometric flux, f_{\lambda6560}/f_{bol}. This ratio may be
multiplied by the measured equivalent width of the H-alpha emission line to
yield L_{H\alpha}/L_{bol}. We provide \chi values for all objects in our
sample, as well as fits to \chi as a function of color and average values by
spectral type. This method was used by West et al.(2004) to examine trends in
magnetic activity strength in low mass stars.Comment: 11 pages, 5 figures. Accepted for publication in PAS
Multiple views of magnetism in cool stars
Magnetic fields are regarded as a crucial element for our understanding of
stellar physics. They can be studied with a variety of methods which provide
complementary - and sometimes contradictory - information about the structure,
strength and dynamics of the magnetic field and its role in the evolution of
stars. Stellar magnetic fields can be investigated either with direct methods
based on the Zeeman effect or through the observation of activity phenomena
resulting from the interaction of the field with the stellar atmosphere. In
this Cool Stars XVII Splinter Session we discussed the results obtained by the
many ongoing studies of stellar activity and direct studies of surface magnetic
fields, as well as the state- of-the-art techniques on which they are based. We
show the strengths and limitations of the various approaches currently used and
to point out their evolution as well as the interest of coupling various
magnetism and activity proxies.Comment: 4 pages. Summary of the splinter session "Multiple views of magnetism
in cool stars" held at the 17th Cambridge Workshop on Cool Stars, Stellar
Systems, and the Sun, June 25th 2012, Barcelona, Spain. Submitted for
publication in AN 334, Eds Klaus Strassmeier and Mercedes Lopez-Morale
The Ultraviolet Radiation Environment Around M dwarf Exoplanet Host Stars
The spectral and temporal behavior of exoplanet host stars is a critical
input to models of the chemistry and evolution of planetary atmospheres. At
present, little observational or theoretical basis exists for understanding the
ultraviolet spectra of M dwarfs, despite their critical importance to
predicting and interpreting the spectra of potentially habitable planets as
they are obtained in the coming decades. Using observations from the Hubble
Space Telescope, we present a study of the UV radiation fields around nearby M
dwarf planet hosts that covers both FUV and NUV wavelengths. The combined
FUV+NUV spectra are publically available in machine-readable format. We find
that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ
832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition
region UV emission. No "UV quiet" M dwarfs are observed. The bright stellar
Ly-alpha emission lines are reconstructed, and we find that the Ly-alpha line
fluxes comprise ~37-75% of the total 1150-3100A flux from most M dwarfs; >
10^{3} times the solar value. The F(FUV)/F(NUV) flux ratio, a driver for
abiotic production of the suggested biomarkers O2 and O3, is shown to be ~0.5-3
for all M dwarfs in our sample, > 10^{3} times the solar ratio. For the four
stars with moderate signal-to-noise COS time-resolved spectra, we find UV
emission line variability with amplitudes of 50-500% on 10^{2} - 10^{3} s
timescales. Finally, we observe relatively bright H2 fluorescent emission from
four of the M dwarf exoplanetary systems (GJ 581, GJ 876, GJ 436, and GJ 832).
Additional modeling work is needed to differentiate between a stellar
photospheric or possible exoplanetary origin for the hot (T(H2) \approx
2000-4000 K) molecular gas observed in these objects.Comment: ApJ, accepted. 16 pages, 10 figures. On-line data at:
http://cos.colorado.edu/~kevinf/muscles.htm
Photometric Variability in Kepler Target Stars: The Sun Among Stars -- A First Look
The Kepler mission provides an exciting opportunity to study the lightcurves
of stars with unprecedented precision and continuity of coverage. This is the
first look at a large sample of stars with photometric data of a quality that
has heretofore been only available for our Sun. It provides the first
opportunity to compare the irradiance variations of our Sun to a large cohort
of stars ranging from vary similar to rather different stellar properties, at a
wide variety of ages. Although Kepler data is in an early phase of maturity,
and we only analyze the first month of coverage, it is sufficient to garner the
first meaningful measurements of our Sun's variability in the context of a
large cohort of main sequence stars in the solar neighborhood. We find that
nearly half of the full sample is more active than the active Sun, although
most of them are not more than twice as active. The active fraction is closer
to a third for the stars most similar to the Sun, and rises to well more than
half for stars cooler than mid K spectral types.Comment: 13 pages, 4 figures, accepted to ApJ Letter
Long-term chromospheric activity in southern M dwarfs: Gl 229 A and Gl 752 A
Several late-type stars present activity cycles similar to that of the Sun.
However, these cycles have been mostly studied in F to K stars. Due to their
small intrinsic brightness, M dwarfs are not usually the targets of long-term
observational studies of stellar activity, and their long-term variability is
generally not known. In this work, we study the long-term activity of two M
dwarf stars: Gl 229 A (M1/2) and Gl 752 A (M2.5). We employ medium resolution
echelle spectra obtained at the 2.15 m telescope at the Argentinian observatory
CASLEO between the years 2000 and 2010 and photometric observations obtained
from the ASAS database. We analyzed Ca \II K line-core fluxes and the mean V
magnitude with the Lomb-Scargle periodogram, and we obtain possible activity
cycles of 4 yr and 7 yr for Gl 229 A and Gl 752 A respectively.Comment: Accepted for publication by Astronomical Journal (AJ
White-light flares on cool stars in the Kepler Quarter 1 Data
We present the results of a search for white light flares on the ~23,000 cool
dwarfs in the Kepler Quarter 1 long cadence data. We have identified 373
flaring stars, some of which flare multiple times during the observation
period. We calculate relative flare energies, flare rates and durations, and
compare these with the quiescent photometric variability of our sample. We find
that M dwarfs tend to flare more frequently but for shorter durations than K
dwarfs, and that they emit more energy relative to their quiescent luminosity
in a given flare than K dwarfs. Stars that are more photometrically variable in
quiescence tend to emit relatively more energy during flares, but variability
is only weakly correlated with flare frequency. We estimate distances for our
sample of flare stars and find that the flaring fraction agrees well with other
observations of flare statistics for stars within 300 pc above the Galactic
Plane. These observations provide a more rounded view of stellar flares by
sampling stars that have not been pre-selected by their activity, and are
informative for understanding the influence of these flares on planetary
habitability.Comment: 42 pages, 10 figures, 2 tables; Accepted for publication in the
Astronomical Journa
- …
