4,095 research outputs found

    A TRAIL-R1-specific ligand in combination with doxorubicin selectively targets primary breast tumour cells for apoptosis

    Get PDF
    A TRAIL-R1-specific ligand in combination with doxorubicin selectively targets primary breast tumour cells for apoptosi

    Eurasian Arctic greening reveals teleconnections and the potential for novel ecosystems

    Get PDF
    Arctic warming has been linked to observed increases in tundra shrub cover and growth in recent decades on the basis of significant relationships between deciduous shrub growth/biomass and temperature. These vegetation trends have been linked to Arctic sea ice decline and thus to the sea ice/albedo feedback known as Arctic amplification. However, the interactions between climate, sea ice and tundra vegetation remain poorly understood. Here we reveal a 50- year growth response over a >100,000 km2 area to a rise in summer temperature for alder (Alnus) and willow (Salix), the most abundant shrub genera respectively at and north of the continental treeline. We demonstrate that whereas plant productivity is related to sea ice in late spring, the growing season peak responds to persistent synoptic-scale air masses over West Siberia associated with Fennoscandian weather systems through the Rossby wave train. Substrate is important for biomass accumulation, yet a strong correlation between growth and temperature encompasses all observed soil types. Vegetation is especially responsive to temperature in early summer. These results have significant implications for modelling present and future Low Arctic vegetation responses to climate change, and emphasize the potential for structurally novel ecosystems to emerge fromwithin the tundra zone.Vertaisarviointia edeltÀvÀ kÀsikirjoitu

    Assessing availability and greenhouse gas emissions of lignocellulosic biomass feedstock supply – case study for a catchment in England

    Get PDF
    © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.Feedstocks from lignocellulosic biomass (LCB) include crop residues and dedicated perÂŹennial biomass crops. The latter are often considered superior in terms of climate change mitigation potential. Uncertainty remains over their availability as feedstocks for biomass provision and the net greenhouse gas emissions (GHG) during crop production. Our objective was to assess the optimal land allocation to wheat and Miscanthus in a specific case study located in England, to increase bioÂŹmass availability, improve the carbon balance (and reduce the consequent GHG emissions), and miniÂŹmally constrain grain production losses from wheat. Using soil and climate variables for a catchment in east England, biomass yields and direct nitrogen emissions were simulated with validated process-based models. A ‘Field to up-stream factory gate’ life-cycle assessment was conducted to estimate indirect management-related GHG emissions. Results show that feedstock supply from wheat straw can be supplemented beneficially with LCB from Miscanthus grown on selected low-quality soils. In our study, 8% of the less productive arable land area was dedicated to Miscanthus, increasing total LCB provision by about 150%, with a 52% reduction in GHG emission per ton LCB delivered and only a minor effect on wheat grain production (−3%). In conclusion, even without considering the likely carbon sequestration in impoverished soils, agriculture should embrace the opportunities to provide the bioeconomy with LCB from dedicated, perennial crops.Peer reviewe

    The requirement for calcification differs between ecologically important coccolithophore species

    Get PDF
    Summary Coccolithophores are globally distributed unicellular marine algae that are characterized by their covering of calcite coccoliths. Calcification by coccolithophores contributes significantly to global biogeochemical cycles. However, the physiological requirement for calcification remains poorly understood as non‐calcifying strains of some commonly used model species, such as Emiliania huxleyi, grow normally in laboratory culture. To determine whether the requirement for calcification differs between coccolithophore species, we utilized multiple independent methodologies to disrupt calcification in two important species of coccolithophore: E. huxleyi and Coccolithus braarudii. We investigated their physiological response and used time‐lapse imaging to visualize the processes of calcification and cell division in individual cells. Disruption of calcification resulted in major growth defects in C. braarudii, but not in E. huxleyi. We found no evidence that calcification supports photosynthesis in C. braarudii, but showed that an inability to maintain an intact coccosphere results in cell cycle arrest. We found that C. braarudii is very different from E. huxleyi as it exhibits an obligate requirement for calcification. The identification of a growth defect in C. braarudii resulting from disruption of the coccosphere may be important in considering their response to future changes in ocean carbonate chemistry

    A remembrance of things (best) forgotten: The 'allegorical past' and the feminist imagination

    Get PDF
    This is the author's PDF version of an article published in Feminist theology© 2012. The definitive version is available at http://fth.sagepub.com/This article discusses the US TV series Mad Men, which is set in an advertising agency in 1960s New York, in relation to two key elements which seem significant for a consideration of the current state of feminism in church and academy, both of which centre around what it means to remember or (not) to forget

    TLR-mediated activation of Waldenström macroglobulinemia B cells reveals an uncoupling from plasma cell differentiation

    Get PDF
    Waldenstr¹om macroglobulinemia (WM) is a rare malignancy in which clonal B cells infiltrate the bone marrow and give rise to a smaller compartment of neoplastic plasma cells that secrete monoclonal immunoglobulin M paraprotein. Recent studies into underlying mutations in WM have enabled a much greater insight into the pathogenesis of this lymphoma. However, there is considerably less characterization of the way in which WM B cells differentiate and how they respond to immune stimuli. In this study, we assess WM B-cell differentiation using an established in vitro model system. Using T-cell–dependent conditions, we obtained CD1381 plasma cells from WM samples with a frequency similar to experiments performed with B cells from normal donors. Unexpectedly, a proportion of the WM B cells failed to upregulate CD38, a surface marker that is normally associated with plasmablast transition and maintained as the cells proceed with differentiation. In normal B cells, concomitant Toll-like receptor 7 (TLR7) activation and B-cell receptor cross-linking drives proliferation, followed by differentiation at similar efficiency to CD40-mediated stimulation. In contrast, we found that, upon stimulation with TLR7 agonist R848, WM B cells failed to execute the appropriate changes in transcriptional regulators, identifying an uncoupling of TLR signaling from the plasma cell differentiation program. Provision of CD40L was sufficient to overcome this defect. Thus, the limited clonotypic WM plasma cell differentiation observed in vivo may result from a strict requirement for integrated activation

    Do Micronutrient and Omega-3 Fatty Acid Supplements Affect Human Maternal Immunity during Pregnancy? A Scoping Review

    Get PDF
    Maternal dietary micronutrients and omega-3 fatty acids support development of the fetal and neonatal immune system. Whether supplementation is similarly beneficial for the mother during gestation has received limited attention. A scoping review of human trials was conducted looking for evidence of biochemical, genomic, and clinical effects of supplementation on the maternal immune system. The authors explored the literature on PubMed, Cochrane Library, and Web of Science databases from 2010 to the present day using PRISMA-ScR methodology. Full-length human trials in English were searched for using general terms and vitamin A, B12, C, D, and E; choline; iodine; iron; selenium; zinc; and docosahexaenoic/eicosapentaenoic acid. Of 1391 unique articles, 36 were eligible for inclusion. Diverse biochemical and epigenomic effects of supplementation were identified that may influence innate and adaptive immunity. Possible clinical benefits were encountered in malaria, HIV infections, anemia, Type 1 diabetes mellitus, and preventing preterm delivery. Only limited publications were identified that directly explored maternal immunity in pregnancy and the effects of micronutrients. None provided a holistic perspective. It is concluded that supplementation may influence biochemical aspects of the maternal immune response and some clinical outcomes, but the evidence from this review is not sufficient to justify changes to current guidelines.</jats:p

    Yeasts associated with the production of distilled alcoholic beverages

    Get PDF
    Distilled alcoholic beverages are produced firstly by fermenting sugars emanating from cereal starches (in the case of whiskies), sucrose-rich plants (in the case of rums), fructooligosaccharide-rich plants (in the case of tequila) or from fruits (in the case of brandies). Traditionally, such fermentations were conducted in a spontaneous fashion, relying on indigenous microbiota, including wild yeasts. In modern practices, selected strains of Saccharomyces cerevisiae are employed to produce high levels of ethanol together with numerous secondary metabolites (eg. higher alcohols, esters, carbonyls etc.) which greatly influence the final flavour and aroma characteristics of spirits following distillation of the fermented wash. Therefore, distillers, like winemakers, must carefully choose their yeast strain which will be very important in providing the alcohol content and the sensory profiles of spirit beverages. This Chapter discusses yeast and fermentation aspects associated with the production of selected distilled spirits and highlights similarities and differences with the production of wine

    Helicobacter pylori Outer Membrane Protein 18 ( Hp1125 ) Induces Dendritic Cell Maturation and Function

    Full text link
    Background.  Dendritic cells (DCs) are potent antigen-presenting cells that initiate T-cell responses. A robust adaptive Th1 immune response is crucial to an adaptive (Th2) immune response necessary for vaccine-induced protective immunity against Helicobacter pylori. It has been shown that several outer membrane proteins (Omps) induce a robust antibody response. However, it is also known that the antibodies generated are not protective. Moreover there is great variation in the recognition of high molecular weight H. pylori proteins by sera from infected patients. In contrast to the high molecular weight proteins, serologic responses to small molecular weight proteins provide assessment of current infection with H. pylori and also of its eradication. Aim.  The goal of the study was to analyze the activation of the immune response by a specific low molecular weight Omp that is universally expressed by all H. pylori strains. Therefore, we studied interaction of H. pylori Omp18 with DCs. Methods.  Activation of murine bone marrow-derived DCs and production of cytokines by Omp18 was assessed by fluorescence-activated cell sorter (FACS) for costimulatory markers and ELISA, respectively. The ability of Omp18 stimulated DCs to induce lymphocyte proliferation was measured in a mixed leukocyte reaction. Results.  Omp18 induced higher expression of the B7 (CD80 and CD86) costimulatory molecule after 18 hours indicating processing and presentation of the antigen on the surface by bone marrow-derived DCs. The maturing DCs also secreted significant levels of IL-12, but was 4-fold less than that stimulated by whole bacteria. Omp18-primed DCs induced proliferation and release of IFNγ by syngeneic splenocytes. Conclusion.  We concluded that Omp18 is capable of activating DCs initiating a Th1 immune response.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73882/1/j.1523-5378.2005.00350.x.pd
    • 

    corecore