4,834 research outputs found

    Evolution of a shear zone before, during and after melting

    Get PDF
    Partial melt in the deforming mid- or lower continental crust causes a strength decrease and drives formation of lithological heterogeneities. However, mechanisms of formation of syn-melt deformation zones and strain partitioning in partially molten rock remain poorly understood. We use field and microstructural observations to unravel the evolution of a partial melt shear zone, Seiland Igneous Province, northern Norway. The Øksfjord shear zone (ØSZ) is one of several paragneiss shear zones present within gabbros of the Seiland Igneous Province, formed by syn-intrusive deep crustal shearing during lithospheric extension related to continental rifting. Microstructures from the ØSZ show evidence for different deformation conditions. The first phase was active pre-melt and involved deformation at high subsolidus temperatures. This was followed by syn-melt deformation of the shear zone causing a relative strength increase towards the shear zone centre upon crystallization. The third phase nucleated two parallel shear zones at the edges of the ØSZ; melt textures are absent and microstructures indicate deformation at lower temperatures and higher stresses. In effect, melt migration towards the shear zone centre ultimately led to strengthening of the shear zone core, with post-crystallization deformation focusing along shear zone margins where significant heterogeneities are present

    Evidence for ablated flows in the shell of nova DQ Her

    Full text link
    High-resolution longslit Halpha spectra of the shell of the old nova DQ Her have been obtained with the William Herschel Telescope using the ISIS spectrograph. An equatorial expansion velocity of 370+/-14 km/s is derived from the spectra which, in conjunction with a narrowband Halpha image of the remnant, allows a distance estimate of 525+/-28 pc. An equatorial ring which exhibits enhanced [NII] emission has also been detected and the inclination angle of the shell is found to be 86.8+/-0.2 degrees with respect to the line of sight. The spectra also reveal tails extending from the clumps in the shell, which have a radial velocity increasing along their length. This suggests the presence of a stellar wind, collimated in the polar direction, which ablates fragments of material from the clumps and accelerates them into its stream up to a terminal velocity of order 800-900 km/s.Comment: 7 pages, 6 figure

    Melt organisation and strain partitioning in the lower crust

    Get PDF
    Partial melts can form as a result of crustal thickening due to orogenesis. Even small melt fractions weaken the crust, so that partially molten volumes should accumulate significant amounts of strain. However, relatively little is known of how strain partitions in partial melts, and how effective the melt expulsion processes from the partially molten crust are. Using examples from the Western Gneiss Region (WGR), Norway, we consider a case of co-existing migmatites and shear zones. Field, image analysis, and microanalytical methods allow (semi)quantification of melt volume, rock mineralogy and mineral chemistry, and microstructures. Integration of these analyses implies effective syn-melt strain partitioning and subsequent freezing of both the shear zone and migmatite texture. We propose a mechanism that allows i) syn-melt strain localisation at an outcrop scale through stress-driven melt organisation, resulting in significant relative competence differences in a partially molten rock volume; and ii) formation of fine-grained rocks at outcrop that is entirely or mostly syn-melt, without subsequent mylonitic shearing in the solid-state. Syn-melt shear zones that have not acted as effective melt transport channels and/or that have not accumulated post-melt deformation may be more common than conventionally assumed

    Overprinting orogenic events, ductile extrusion and strain partitioning during Caledonian transpression, NW Mainland Shetland

    Get PDF
    A 3.6 km thick stack of mid-crustal deformed Precambrian rocks is associated with the North Roe Nappe (NRN) and Walls Boundary Fault in the northernmost Scottish Caledonides on NW Mainland Shetland. The greenschist- to amphibolite-facies rocks display unusually complex and heterogeneous combinations of coaxial and non-coaxial transpressional deformation. Previously published isotopic dating, together with new detailed field mapping and microstructural characterisation show that the NRN preserves a record of Neoarchaean, Neoproterozoic (Knoydartian) and Ordovician-Silurian (Caledonian) overprinting deformation and metamorphism. Neoarchaean events in the Uyea Gneiss Complex located in its footwall are reworked by younger events in the overlying nappe pile. The main ductile fabrics were formed during Caledonian top-to-the W/NW thrusting and top-to-the N sinistral shearing, with subordinate regions of top- to-the E extensional and NNE-SSW dextral shearing. In lower parts of the NRN, these different kinematic domains are texturally indistinguishable and overprinting relationships are absent. At higher levels, top-to-the-W/NW thrust-related fabrics are consistently overprinted by top-to-the-N/NE sinistral shearing. The highly partitioned transpressional deformation shows similarities with equivalent rocks of the Moine Nappe in NW Scotland

    Recent Applications of RNA Sequencing in Food and Agriculture

    Get PDF
    RNA sequencing (RNA-Seq) is the leading, routine, high-throughput, and cost-effective next-generation sequencing (NGS) approach for mapping and quantifying transcriptomes, and determining the transcriptional structure. The transcriptome is a complete collection of transcripts found in a cell or tissue or organism at a given time point or specific developmental or environmental or physiological condition. The emergence and evolution of RNA-Seq chemistries have changed the landscape and the pace of transcriptome research in life sciences over a decade. This chapter introduces RNA-Seq and surveys its recent food and agriculture applications, ranging from differential gene expression, variants calling and detection, allele-specific expression, alternative splicing, alternative polyadenylation site usage, microRNA profiling, circular RNAs, single-cell RNA-Seq, metatranscriptomics, and systems biology. A few popular RNA-Seq databases and analysis tools are also presented for each application. We began to witness the broader impacts of RNA-Seq in addressing complex biological questions in food and agriculture

    Exploiting Parallel R in the Cloud with SPRINT

    Get PDF
    BACKGROUND: Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. OBJECTIVES: Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon’s Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. METHODS: The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. RESULTS: It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of algorithm. Resource underutilization can further improve the time to result. End-user’s location impacts on costs due to factors such as local taxation. Conclusions: Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds

    Hipparcos red stars in the HpV_{T2} and VI_C systems

    Get PDF
    For Hipparcos M, S, and C spectral type stars, we provide calibrated instantaneous (epoch) Cousins V−IV-I color indices using newly derived HpVT2HpV_{T2} photometry. Three new sets of ground-based Cousins VIVI data have been obtained for more than 170 carbon and red M giants. These datasets in combination with the published sources of VIVI photometry served to obtain the calibration curves linking Hipparcos/Tycho Hp−VT2Hp-V_{T2} with the Cousins V−IV-I index. In total, 321 carbon stars and 4464 M- and S-type stars have new V−IV-I indices. The standard error of the mean V−IV-I is about 0.1 mag or better down to Hp≈9Hp\approx9 although it deteriorates rapidly at fainter magnitudes. These V−IV-I indices can be used to verify the published Hipparcos V−IV-I color indices. Thus, we have identified a handful of new cases where, instead of the real target, a random field star has been observed. A considerable fraction of the DMSA/C and DMSA/V solutions for red stars appear not to be warranted. Most likely such spurious solutions may originate from usage of a heavily biased color in the astrometric processing.Comment: 10 figures, 1 electronic table, accepted in A&

    Near-Infrared Photometry of Carbon Stars

    Full text link
    Near-infrared, JHKL, photometry of 239 Galactic carbon-rich variable stars is presented and discussed. From these and published data the stars were classified as Mira or non-Mira variables and amplitudes and pulsation periods, ranging from 222 to 948 days for the Miras, were determined for most of them. A comparison of the colour and period relations with those of similar stars in the Large Magellanic Cloud indicates minor differences, which may be the consequence of sample selection effects. Apparent bolometric magnitudes were determined by combining the mean JHKL fluxes with mid-infrared photometry from IRAS and MSX. Then, using the Mira period luminosity relation to set the absolute magnitudes, distances were determined -- to greater accuracy than has hitherto been possible for this type of star. Bolometric corrections to the K magnitude were calculated and prescriptions derived for calculating these from various colours. Mass-loss rates were also calculated and compared to values in the literature. Approximately one third of the C-rich Miras and an unknown fraction of the non-Miras exhibit apparently random obscuration events that are reminiscent of the phenomena exhibited by the hydrogen deficient RCB stars. The underlying cause of this is unclear, but it may be that mass loss, and consequently dust formation, is very easily triggered from these very extended atmospheres.Comment: 35 pages, 21 figs, accepted for publication in MNRAS. Large data table will be available on-line onl

    A Rydberg Quantum Simulator

    Full text link
    Following Feynman and as elaborated on by Lloyd, a universal quantum simulator (QS) is a controlled quantum device which reproduces the dynamics of any other many particle quantum system with short range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open system evolution. We investigate how laser excited Rydberg atoms in large spacing optical or magnetic lattices can provide an efficient implementation of a universal QS for spin models involving (high order) n-body interactions. This includes the simulation of Hamiltonians of exotic spin models involving n-particle constraints such as the Kitaev toric code, color code, and lattice gauge theories with spin liquid phases. In addition, it provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The key basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates via auxiliary Rydberg atoms, including a possible dissipative time step via optical pumping. This allows to mimic the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.Comment: 8 pages, 4 figure
    • …
    corecore