
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800



1

Chapter

Recent Applications of RNA 
Sequencing in Food and 
Agriculture
Venkateswara R. Sripathi, Varsha C. Anche, 

Zachary B. Gossett and Lloyd T. Walker

Abstract

RNA sequencing (RNA-Seq) is the leading, routine, high-throughput, and 
 cost-effective next-generation sequencing (NGS) approach for mapping and quan-
tifying transcriptomes, and determining the transcriptional structure. The tran-
scriptome is a complete collection of transcripts found in a cell or tissue or organism 
at a given time point or specific developmental or environmental or physiological 
condition. The emergence and evolution of RNA-Seq chemistries have changed the 
landscape and the pace of transcriptome research in life sciences over a decade. This 
chapter introduces RNA-Seq and surveys its recent food and agriculture applica-
tions, ranging from differential gene expression, variants calling and detection, 
allele-specific expression, alternative splicing, alternative polyadenylation site 
usage, microRNA profiling, circular RNAs, single-cell RNA-Seq, metatranscrip-
tomics, and systems biology. A few popular RNA-Seq databases and analysis tools 
are also presented for each application. We began to witness the broader impacts of 
RNA-Seq in addressing complex biological questions in food and agriculture.

Keywords: RNA-Seq, transcriptome, transcripts, genes, variants, gene expression, 
analysis, applications, databases, and tools

1. Introduction

Transcriptome broadly refers to a collection of RNA transcripts within a particular 
context that includes combinations of spatial and temporal factors: biological level 
of organization, from organelle to organism; and phase of growth, differentiation, 
or development, from zygote through adult. Additionally, one can investigate tran-
scriptomes under more experimental contexts by controlling or varying the factors 
mentioned above, along with combinations of environmental, genetic, and physi-
ological conditions. All of these factors influence the constituents of a transcriptome, 
an array of RNA types that traditionally fall into two categories: coding, the messen-
ger RNAs (mRNAs); and non-coding (ncRNAs), such as ribosomal (rRNAs), transfer 
(tRNA), small interfering (siRNAs), micro (miRNAs), tRNA-derived small (tsRNA), 
Piwi-interacting (piRNAs), short hairpin (shRNAs), small nuclear (snRNAs), small 
nucleolar (snoRNAs), long non-coding (lncRNAs), and circular RNAs (circRNAs)  
[1, 2]. Interestingly, studies have questioned this sharp distinction between coding 
and non-coding RNAs, paving the way for more research into multifunctional RNA 
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types that transcend this traditional dichotomy [3, 4]. Given the complex definitions 
of transcriptome and its constituent RNAs, keen attention is required in understand-
ing and managing the context within which a transcriptome is generated and ana-
lyzed throughout the experimental procedure and downstream analysis.

Thus far, RNA research efforts have concentrated on a few major types of RNAs: 
mRNAs, rRNAs, tRNAs, and miRNAs. Accounting for 3-4% of the total RNA in a 
cell [5], mRNAs are products of transcription and, in eukaryotes, multiple process-
ing steps that usually involve the addition of adenosine monophosphates to form 
a poly(A) tail via polyadenylation [6]. This coding mRNA is then translated into 
an amino acid (AA) chain by the ribosome, in a process incorporating ribosomal 
proteins, AAs, and non-coding RNAs, such as rRNAs and tRNAs. About 60% of 
the ribosome’s mass [7] and up to 95% of the total RNA in a cell [8] can consist of 
rRNAs, which facilitate mRNA and tRNA binding while catalyzing the transfer  
of an AA from the tRNA to the growing AA chain. Many processes that comprise 
gene expression, including the steps mentioned above, can be regulated by miRNAs 
[9]. These short (17-22 bp), single-stranded, non-coding RNAs are exclusive to 
eukaryotes and typically bind to complementary sequences on mRNA molecules, 
thereby inducing degradation or inefficient translation of the target transcript [10].

These four major types of RNA and the multitude of minor types can be 
selectively isolated and analyzed using various wet lab and dry lab techniques, 
depending on the specific applications and biological questions under investigation. 
In the case of transcriptome profiling for coding RNAs in a eukaryotic organism, 
the ratio of mRNA to rRNAs can be increased: first during library preparation 
through poly(A) selection, ribosomal depletion, and size selection strategies; and 
again during the bioinformatic analysis by rRNA filtering during the initial quality 
control (QC) step in the pipeline. Especially for capturing miRNAs, in addition to 
rRNA decontamination steps, size selection strategies are used for selective isola-
tion of small RNA [11]. Many bioinformatics tools are available customized for 
short sequence alignments [12], and a few can evaluate the thermodynamics of 
miRNA secondary structures [13]. The molecular biology of RNA transcription, 
processing, transportation, and translation can be drastically different between 
phylogenetically distant organisms, and hence the taxonomy of the species being 
studied is often considered. A variety of wet lab and dry lab techniques have been 
developed to account for the biological differences in mRNA structure and process-
ing throughout the phylogenetic tree of life.

Transcriptome analysis evolved steadily from nucleic acid detection methods 
(e.g., northern blots), to hybridization-based methods (e.g., microarrays), through 
a multitude of sequencing-based methods (e.g., RNA-Seq). RNA-Seq has been the 
most widely used approach for analyzing transcriptomes obtained from phyloge-
netically diverse organisms [14]. The swift advancements in RNA-Seq research are 
being driven by the continual improvements in sequencing technologies (first, sec-
ond, and third generation), which have steadily provided higher throughput, lower 
cost, and more accurate sequencing for transcriptome analyses. Despite the avail-
ability of many sequencing technologies, the Illumina short-read method remains 
the most widely used platform for transcriptome sequencing, and many consider 
it as the gold-standard sequencing for single-nucleotide resolution transcriptome 
analysis with an accuracy of 99.99% and minimal biases [15]. This method has 
evolved from 35 bp to 350 bp fragment sequencing in the past decade, and it offers 
multiple library preparation options, including single-end, mate-pair, and paired-
end. Library preparation can yield either stranded sequences, where the sense and/
or antisense orientation of the output reads is known, or unstranded sequences, 
where the read orientation is unknown. Stranded RNA-Seq enables the resolution 
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of both sense and antisense transcription for genes overlapping on opposite strands 
[16], and it remains the standard for most RNA-Seq applications.

A thorough conceptual understanding of the prospective RNA-Seq experiment 
is required to overcome the plethora of potential biases, errors, misinterpretations, 
and other various challenges common in RNA-Seq experiments [17, 18]; researchers 
ought to precisely monitor and engineer each phase of the entire process, wet lab 
through the dry lab, from beginning to end and in all steps between: experimental 
design, sample collection, RNA isolation, RNA-QC, adapter ligation, multiplexing, 
library preparation, library-QC, sequencing, data collection, demultiplexing, pre-
processing, data-QC, analyses, and interpretation. The experimental design is the 
first fundamental process in RNA-Seq analysis. When the goal is to detect statisti-
cally significant, differentially expressed genes (DEGs), increasing the number of 
replicates usually has a more positive effect than increasing the sequencing depth, 
especially when sequencing over 2 million reads per sample [19, 20]. For most 
 RNA-Seq experiments, six or more biological replicates are recommended, and at 
least three biological replicates are necessary. If one aims to identify DEGs, then 
pooling biological replicates before multiplexing is discouraged, but such pooling 
might be pragmatic when one only attempts to assemble a comprehensive tran-
scriptome. Contrary to biological replicates, technical replicates are unnecessary for 
RNA-Seq on modern sequencing platforms [19], and resources can be better utilized 
by increasing the number of biological replicates and minimizing batch effects from 
unintended influences, such as variance in personnel, in the laboratory environ-
ment, and in the selection and usage of materials and methods. A thorough review 
of the expansive RNA-Seq landscape is available, and to confine our discussion 
to the scope of this chapter, we will be highlighting the most popular and current 
RNA-Seq applications in food and agriculture.

2. RNA sequencing (RNA-Seq) applications

2.1 Differential gene expression (DGE)

As previously mentioned, transcriptomes are spatially and temporally dynamic, 
and they evolve in response to changing environmental, genetic, and physiological 
conditions. For instance, the transcriptome of one cell type can be significantly dif-
ferent from another cell type, even within the same tissue, and similarly, the tran-
scriptome of a particular cell can vary drastically, as it transitions through the cell 
cycle, differentiates, acclimates to environmental factors, adapts to the introduction 
of particular treatments, or changes during disease progression. RNA-Seq can 
detect such changes in gene expression levels between samples and, in DGE studies, 
between two or more experimental groups [21, 22]. DGE analysis seeks to identify 
statistically significant genes that are expressed differently between groups, which 
are generated through careful attention to experimental design [23]. DGE studies 
can elucidate functional elements of the genome by identifying gene-level relation-
ships between transcript abundance and experimental conditions, thereby illumi-
nating the mechanisms of associated physiological processes and expanding our 
understanding of the links between genotype and phenotype [24].

While DGE analysis focuses on quantifying and comparing the complete 
collection of all transcript isoforms for a gene to identify differentially expressed 
genes (DEGs), differential isoform expression (DIE) analysis focuses on quanti-
fying and comparing each individual isoform in a collection of transcripts associ-
ated with a particular gene, to identify differentially expressed isoforms (DEIs) 
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between experimental groups [25]. The materials and methods for analyzing 
DEGs differ from those used for DEIs. The decision to find differential genes or 
isoforms is crucial and determines the downstream analysis, and it is ideally taken 
at the beginning of the experiment. Given these differences, we discussed the 
methods most relevant to DGE analysis, since it has been more deeply studied and 
widely applied. Some methods being applied to investigate DEGs include north-
ern blot, western blot, quantitative real-time PCR (qPCR), expressed sequence 
tags (ESTs), microarrays, and RNA-Seq. Most bioinformatics pipelines for DGE 
analysis of RNA-Seq data include five main stages: QC, alignment, quantification, 
normalization, and DGE calculation, which usually assumes either a negative 
binomial, log-normal, or nonparametric statistical distribution. Many databases 
and bioinformatics tools are available for all these stages and downstream analy-
ses, and a few popular, reliable databases and DGE calculation tools are presented 
below (Table 1). Often each program will output slightly different collections of 
statistically significant DEGs [21], so many investigators use multiple tools, assign 
higher confidence to intersectional DEGs, and then continue by piping these 
results through various downstream functional analyses, which will be discussed 
later in this chapter.

RNA-Seq followed by DGE analysis has been extensively used in the agri-
culture and food industry. Poultry scientists have applied RNA-Seq analysis to 
identify DEGs associated with the eggshell formation in the shell gland at differ-
ent time-points in laying hens [36]. A dairy research group identified significant 
enrichment of DEGs associated with mammary gland development, milk protein 
formation, lipid metabolism, and other biological processes linked with milk 
production traits in lactating cows [37]. Interestingly, the possible roles of DEGs 
involved in pathogenesis-related pathways in response to peanut allergy have been 
examined by comparing the transcriptome profiles of high-risk and risk-free 
infants, facilitating early detection of food allergies in infants [38]. The symbiotic 
association between rhizobium bacteria and root nodules in leguminous plants 
is important in agriculture and soil metagenomics, as this interaction improves 
soil fertility by nitrogen fixation and increases crop production. Differences in 
nodulation phenotypes have been observed by comparing two diverse symbi-
otic systems at different time-points using RNA-Seq [39]. Furthermore, these 
researchers identified DEGs in response to specific strains of rhizobia in soybean 
roots, and the majority of these DEGs were involved in plant-pathogen interac-
tions and flavonoids biosynthesis [39]. By studying global transcriptome profiles 
in strawberry fruits, plant scientists have elucidated the influence of red and blue 
light on the differential expression of genes associated with anthocyanin biosyn-
thesis and accumulation [40].

Databases Tools

S.No Database Citation S.No Tool Citation

1 SPEED2 [26] 1 Ballgown [27]

2 ImaGEO [28] 2 limma [29]

3 GXD [30] 3 NOISeq [31]

4 RED [32] 4 DESeq2 [33]

5 Omnibus database [34] 5 edgeR [35]

Table 1. 
Some popular databases and tools in finding DEGs in RNA-Seq data.
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2.2 Variants calling and detection

The genetic variations in the coding region may or may not alter the amino 
acid sequence, resulting in asynonymous or synonymous variants, respectively; 
characterizing such variants is important for associating the genomic locations with 
a trait or phenotype [41]. RNA-Seq can be used to identify variations in the coding 
sequences, including single-nucleotide variants (SNVs), short insertions/deletions 
(indels <50 bp), and structural variants (SVs). SNVs result from a single nucleotide 
substitution at a particular coordinate and single-nucleotide polymorphism (SNP) 
refers to a frequent SNV, generally present in at least 1% of the subject population 
[42]. SNPs are ubiquitous throughout the coding, non-coding, and regulatory 
regions of the genome. In comparison, a haplotype is a set of genes, alleles, or SNPs, 
which are inherited together. Copy number variations (CNVs) are a type of SV 
where regions in the genome are repeated, and the number of these repeats varies 
among individuals due to duplication or deletion events. The percentage of CNVs 
detected in diverse organisms varied significantly. Over 80% and > 15% of the 
detected SNPs and CNVs were associated with gene expression in the mammalian 
system, respectively [43].

Many experimental methods have been developed to detect genetic variants in 
the genomes of plants and animals, and a few routinely used techniques include 
rhAmp (RNase H2-dependent amplification assay), Kompetitive Allele-Specific 
PCR (KASP), TaqMan, Fluidigm, AmpliSeq, Fluorescence In Situ hybridization 
(FISH), qRT-PCR, microarray, and RNA-Seq. When generating RNA-Seq data for 
the downstream bioinformatics analysis, sequencing depth is a major consideration, 
given its influence on not only the overall results but also the cost of experimenta-
tion; and after analyzing variants for mutated myeloid genes, researchers suggested 
30-40 million paired-end reads per sample was sufficient [44]. Additionally, highly 
variable coverage between different genes can hinder variant calling and annotation 
of RNA-Seq data. To identify variants (SNPs and short indels) in RNA-Seq reads, a 
typical bioinformatics pipeline involves three phases: data clean-up, variant discov-
ery and filtering, and evaluation. A selection of databases and programs for variant 
analysis is presented below (Table 2).

The application of RNA-Seq in genome-wide screening for genetic variants is 
imperative to accelerate the usage of genome-based breeding approaches for select-
ing agriculturally desirable traits in plants [55] and animals [41, 56]. Functional 
SNPs associated with quality traits (e.g., plant color, flowering, fruit color, size, 
and ripening) and/or quantitative traits (e.g., grain yield, abiotic, and biotic stress 
tolerance) may result in phenotypic diversity among individuals. Previous stud-
ies have used RNA-Seq analysis to identify SNPs in relatively smaller genomes, 
such as barley [57], and larger genomes, such as wheat [58]. One of the main 

Databases Tools

S.No Database Citation S.No Tool Citation

1 AWESOME [45] 1 AthCNV [46]

2 KoVariome [47] 2 GATK workflow [48]

3 lncRNASNP2 [49] 3 SQUID [50]

4 SNP2TFBS [51] 4 DeepVariant [52]

5 rSNPBase [53] 5 VarDict [54]

Table 2. 
A few databases and tools in finding structural variants in RNA-Seq.
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goals of livestock germplasm improvement is identifying the genetic variation 
associated with phenotypic traits of economic importance. By screening 15 duck 
transcriptomes, SNPs in genes related to fat metabolism and digestion were found 
in genomic regions that have undergone selective pressures [41]. In a similar study, 
SNPs associated with the fat deposition in sheep have been identified, potentially 
leading to breeding programs that reduce tail size in fat-tailed phenotypes [59]. 
While comparing RNA-Seq variant analysis methodologies for investigating beef 
production in Nellore steers, researchers recently identified SNPs in genes related to 
feed efficiency, an economically important trait in cattle [60].

2.3 Allele-specific expression (ASE)

RNA-Seq data can be used to investigate allele-specific expressions (ASEs), 
which denotes a differential expression of two or more alleles in a diploid or a 
polyploid organism, sometimes may result in multiple traits and phenotypes. 
Heterozygous SNPs may lead to ASE, and this phenomenon is conserved in most 
higher organisms, including those in plant and animal kingdoms. Due to the 
intrinsic potential of heterozygous SNPs, ASE can be a sensitive marker for detect-
ing cis-regulatory variation and reducing background noise in an individual [61]. 
Heterozygous variants have been identified in coding regions of mRNA, possibly 
leading to a variant polypeptide or a truncated protein [62]; non-coding regions 
(splice site, 5’-UTR, or 3’-UTR), possibly influencing mRNA processing and degra-
dation [63]; and non-coding regulatory regions (promoter, enhancer, or silencer), 
possibly affecting the binding of transcription and epigenetic factors [64]. Genetic 
and epigenetic factors regulate transcriptional activity and contribute to ASE, and 
an imbalanced expression via heterozygous SNP loci in a non-haploid genome may 
lead to a diseased or abnormal condition [65]. Using whole genome sequencing 
(WGS) alone, variants throughout the entire genome can be identified. However, 
by combining WGS and RNA-Seq analyses, ASE and allele silencing information 
can also be obtained.

Of the many bioinformatics tools and databases created to explore ASE, a few 
are listed here (Table 3). However, despite the recent developments in ASE bioin-
formatics analysis, significant challenges in applying these tools include: 1) required 
family tree information, i.e., sequencing data from the individual under investiga-
tion and their respective parents, which is more laborious and costly; 2) required 
phased genotype information, i.e., the haplotype of the individual must be known 
in order to use the source file as input; 3) commonly required genomic and tran-
scriptomic data to obtain ASE, but MBASED (Table 3) requires only RNA-Seq data; 
4) common usage of short-read data (100-250 bp) due to the low error rate, which 
is incapable of covering multiple SNVs and subject to read bias at the exon-intron 

Databases Tools

S.No Database Citation S.No Tool Citation

1 dbGaP [66] 1 EMASE [67]

2 Genotype-Tissue Expression, GTEx [68] 2 IDP-ASE [69]

3 AD ASTRA [70] 3 QuSAR [71]

4 dbNSFP [72] 4 ASEQ [73]

5 Genevar [74] 5 MBASED [75]

Table 3. 
Some widely used databases and tools in finding ASE in RNA-Seq data.
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junctions; and 5) lack of advanced statistical methods. Long read (1-100 kb) data 
allows the detection of multiple SNVs, but it is prone to high error rates and low 
throughput, which is not ideal for downstream ASE quantification. Therefore, 
researchers can use a hybrid sequencing approach that combines both short and 
long reads. IDP-ASE (Table 3) can utilize such hybrid data to simultaneously phase 
haplotype and quantify the ASE at both gene and transcript/isoform levels. More 
sophisticated tools are required to identify ASE associated with multiple pheno-
types and complex traits in comprehensive datasets.

Using genome-wide analysis, the underlying genetic and molecular mechanisms 
associated with ASE in heterosis have been determined in hybrid rice [76]. ASE 
of Dof genes in response to plant hormone signaling and abiotic stresses is likely 
mediated through cis-regulatory elements that could be useful for sugarcane crop 
improvement [77]. Genome-wide expression quantitative trait loci (eQTL) and 
ASE analyses helped identify candidate genes that determine the meat quality traits 
in pigs [78]. Similarly, ASE is a widespread phenomenon in the bovine genome, 
and its effects on the meat quality and production traits in Nellore steers have been 
studied by combining genotyping and RNA-Seq data from skeletal muscle tissue 
[79]. With RNA-Seq data from three different tissues (liver, fat, and breast muscle) 
in commercial broiler chickens, researchers examined the biological mechanisms 
of ASE variants and their associated meat traits in poultry production by using 
recently developed bioinformatics software, Variant Call Format (VCF) ASE 
Detection Tool (VADT) [80].

2.4 Alternative splicing (AS)

During the canonical splicing process in eukaryotes, introns are removed 
as lariats, and the flanking exons are rejoined to form a processed mRNA, with 
sequences in the RNA determining where splicing occurs. Usually, exons of the 
same mRNA are spliced, but sometimes exons from different mRNAs can be com-
bined by trans-splicing [81]. The RNA splicing machinery is a complex of proteins 
called the spliceosome, its major components being small nuclear Ribo-Nuclear 
Proteins (snRNPs). The three main types of spliceosome complexes are GU–AG 
spliceosome (major spliceosome), AU–AC spliceosome, and trans-spliceosome 
[82]. In general, three main classes of RNA splicing are found: pre-mRNA splic-
ing, Group II introns self-splicing, and Group I introns self-splicing. A single gene 
can produce multiple products by alternative splicing (AS). In addition to normal, 
canonical splicing, the primary AS events identified in eukaryotes are exon skipping 
(ES), mutually exclusive exons (EE), alternative 5′ donor sites (A5), alternative 3′ 
acceptor sites (A3), alternative promoters (AP), intron retention (IR), and alterna-
tive polyadenylation (APA) [83]. Of these, the later three events gained attention 
recently with the advancements in RNA-Seq. AS is often regulated by activator and 
repressor proteins, and it can lead to premature termination of translation due to 
the interaction of exon junction complexes (EJC) with release factors, triggering the 
Nonsense-Mediated mRNA Decay (NMD) pathway [84].

RNA-Seq data can be assembled into full-length isoforms from the raw reads 
associated with AS of the same gene, and then the corresponding AS events can be 
identified and characterized. Mate-pair and paired-end sequences have performed 
better than single-end short-reads for detecting AS patterns [85]. Among the 
contemporary approaches, long-read sequencing (PacBio/Oxford Nanopore) is 
an ideal solution for generating full-length transcript sequences and detecting AS 
events and isoforms [86]. Full-length isoforms can be assembled with or without 
a reference, and each approach requires specific bioinformatics software. Some of 
these AS tools and databases are presented here (Table 4). Many AS tools can be 
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used to analyze these AS events genome-wide and/or for a single gene. For example, 
the ASGAL pipeline (Table 4) begins by building a splice graph from a reference 
genome and an annotation file. Then, the RNA-Seq reads are aligned to the splice 
graph. Finally, these splice graph alignments are used to detect novel AS events.

Emerging functional roles of AS in generating transcriptomic and proteomic 
diversity have been evident in diverse biological processes [97]. In the tea leaves of 
a Camellia sinensis cultivar, approximately 64% of genes underwent an AS event, 
and many of these events were influenced by heat, drought, and their combined 
stresses [98]. Naturally occurring splice variants in the population have been used 
in detecting genotype-specific AS events, and in turn, these events have served 
as biomarkers for genome-wide association studies (GWAS) in rice subjected to 
salt stress [99]. Comparative transcriptome analyses of fruit, seedling, and flower 
tissues in tomatoes revealed more AS events in fruits. About 60% of the tomato’s 
multi-exon genes undergo AS events, among which IR is prevalent. Also, the 
gene expression is preferentially regulated at the isoform level during early fruit 
 development [100].

2.5 Alternative polyadenylation (APA) site usage

During post-transcriptional processing at the 3’UTR region of pre-mRNA, 
differential usage of polyadenylation sites can lead to a diverse set of transcript 
isoforms with different 3’UTR lengths and sequences, as part of a ubiquitous 
regulatory mechanism called Alternative Polyadenylation (APA). Most eukaryotic 
genes have multiple APA sites (APAs) that are often found in a coding region 
(CR-APA) or 3’UTR (UTR-APA) [101]. APAs found in internal intronic and exonic 
regions account for a small proportion of identified APAs, but these predominantly 
disrupt the coding regions and can result in variable protein isoforms or NMD decay 
[102]. In contrast, APAs found in the terminal exon and 3’UTR regions account for 
a significant proportion of identified APAs, and though such APAs usually do not 
disrupt the coding regions, they may result in transcript isoforms with variable 
lengths. A poly(A) tail in the 3’UTR region of an mRNA transcript generally pro-
vides mRNA stability, localization, and translational efficiency, so these factors are 
subject to APA-mediated regulation [103]. Since the 3’UTR region can have hotspots 
for the binding of miRNAs and RNA-binding proteins (RBPs), any modifications 
in this region may lead to new RNA species interactions or the formation of novel 
secondary structures, thereby affecting translational efficiency [101, 103]. APAs 
likely play a role in many processes involved in gene expression, including nuclear 
export, localization, stability, degradation, repression, translation, and protein 
diversification [104]. Additionally, APAs associated with differentiation, prolifera-
tion, and tissue-specific expression have been reported [105].

Databases Tools

S.No Database Citation S.No Tool Citation

1 DIGGER [87] 1 SplicingFactory [88]

2 MeDAS [89] 2 ASpli [90]

3 ASlive [91] 3 ASGAL [92]

4 CuAS [93] 4 MAJIQ [94]

5 SpliceDisease [95] 5 rMATS [96]

Table 4. 
A few popular databases and tools in finding AS events in RNA-Seq data.
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APAs at the gene-level can be discovered using EST, microarray, RNA-Seq, 
3’ RNA-Seq, and qRT–PCR methodologies. However, genome-wide screen-
ing for APAs can be achieved through NGS based approaches, such as Whole 
Transcriptome Termini Site sequencing (WTTS-Seq), poly(A) site sequencing 
(PAS-Seq), direct RNA sequencing (DRS), poly(A) single-molecule sequencing, as 
well as 3′ region extraction and deep sequencing (3′ READS). Moreover, researchers 
can engage in cell type-specific APA profiling by preprocessing the samples with 
specialized wet-lab methods, such as cell sorting, crosslinking immunoprecipitation 
and green fluorescent protein (GFP)-tagging, and cellular and molecular barcoding. 
All these methods utilize total RNA or mRNA as their starting material, but they 
diverge in their usage of polyA enrichment, library preparation, and sequencing 
strategies. Usually, NGS data analysis for APAs includes preprocessing, size selec-
tion, QC, mapping/assembly, normalized expression value assessment for the 
poly(A) enriched 3’UTRs or transcripts, DGE, functional annotation, motif analy-
sis, and pathway analysis. A few tools that use most of these steps and databases for 
APA analysis are presented (Table 5).

APA processing has been associated with around 70% of human genes, with the 
longest resulting isoform for each usually observed to be the most abundant [102, 
116]. Recent studies have proposed a role for APAs in leaf development and stress 
response in the two dominant rice (Oryza sativa L.) subspecies, indica and japonica, 
possibly accounting for significant differences in their phylogenetic divergence 
[117]. They also demonstrated that variations in 3’UTR length from APA resulted in 
DEGs associated with many important agronomic traits related to rice yield [117]. 
The possible role of APA in remodeling root-associated transcriptomes has been 
observed in Sorghum [118], Bamboo [119], and Arabidopsis [120] in response to 
diverse abiotic stresses. Currently, APA is underexplored and offers many opportu-
nities for significant contributions to the food and agriculture sectors.

2.6 microRNA (miRNA) profiling

RNA-Seq can identify and characterize diverse classes of small (17-200 bp) 
ncRNAs, including miRNAs, siRNAs, piRNAs, tsRNAs, snoRNAs, and snRNAs. 
Almost all types of RNAs crosstalk, and especially miRNAs, the abundant class 
of sRNAs act as mediator molecules in regulating and deregulation of genes via 
complementary binding to miRNA response elements (MREs) on target tran-
scripts [121]. Moreover, co-localization and co-expression of ncRNA and mRNA 
and their interactions are well established [122]. MiRNA genes can be found in 
exonic, intronic, and intergenic regions of the genome, and they are predomi-
nantly localized, form clusters, and generally transcribed together as a single 
transcriptional unit. The various miRNAs can positively and/or negatively regulate 

Databases Tools

S.No Database Citation S.No Tool Citation

1 TREND-DB [106] 1 Deerect-apa [107]

2 Animal-APAdb [108] 2 APAlyzer [109]

3 PlantAPAdb [110] 3 scDAPA [111]

4 APAatlas [112] 4 DeepPASTA [113]

5 APADB [114] 5 TAPAS [115]

Table 5. 
Some popular databases and tools in finding APAs in RNA-Seq data.
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gene expression post-transcriptionally or by translational repression [123]. While 
competing endogenous RNA, ceRNAs (e.g., lncRNAs and circRNAs) contain MREs 
and can regulate gene expression by acting as “miRNA sponges”, thus reducing 
the availability of one or more miRNAs for other potential targets [121]. A nascent 
miRNA transcript undergoes post-transcriptional processing and nuclear export 
during the canonical regulation, eventually being loaded into the RNA-induced 
silencing complex (RISC) [124]. After the incorporated miRNA binds to a target 
mRNA at MREs often located in the 3’-UTR, RISC mediates gene expression by 
post-transcriptional gene silencing (PTGS) or by mRNA cleavage or mRNA deg-
radation [124]. However, the presence of ceRNAs challenges the canonical miRNA 
regulation of gene targets, and the mechanisms and functions of miRNA sponges 
are still unclear [121].

Though several wet lab and computational methods have been evolved in the 
past two decades for genome-wide screening of miRNAs, in silico approaches, 
continue to be more widely used due to the ease in exploring the properties of 
miRNAs. MiRNAs are highly conserved, and the thermodynamics of miRNA 
secondary structures and target binding have been elucidated; identification of con-
served and novel miRNAs and their targets can be performed using readily available 
bioinformatics tools. A few frequently accessed databases and tools used are listed 
here (Table 6). Most studies have applied homology-based approaches in identify-
ing conserved miRNAs, and miRNA precursors can be identified by conducting 
secondary structure analysis using RNAfold [140] or mfold [141]. The properties of 
miRNAs, such as cooperativity and multiplicity, can also predict miRNAs and their 
targets computationally [123].

Since the first reported miRNAs in C. elegans, different miRNAs have been iden-
tified in numerous organisms across multiple kingdoms [123]. Several studies have 
demonstrated their involvement in various biological processes and their potential 
to alter key agronomic traits [142]. Using RNA-Seq, the functional roles of miRNAs 
in various stresses (heat, drought, and salinity) have been reported in Arabidopsis 
[143] and Cotton [144]. Also, many conserved and novel miRNAs and their puta-
tive gene targets were identified in Upland cotton and its closest progenitor spe-
cies using RNA-Seq, and the majority of these targets were transcription factors 
that were involved in the regulation of fiber growth and development and stress 
responses [123]. The role of miRNAs in various diseases has been established over 
two decades, but, recently some naturally occurring food-derived compounds and 
exogenous diet-derived miRNAs have been implicated in determining the human 
gut-associated miRNA expression and their profiles, which contributes to human 
health and well-being of an individual [145].

Databases miRNA gene prediction tools miRNA target prediction 

tools

S.No Database Citation Tool Citation Tool Citation

1 Rfam [125] UEA sRNA workbench [126] miRWalk [127]

2 deepBase [128] Mirnovo [129] mirDIP [130]

3 miRDB [131] miReader [132] psRNATarget [133]

4 miRbase [134] miRDeep-star [135] TargetScan [136]

5 Noncode [137] miRNAkey [138] mirSOM [139]

Table 6. 
A few popular databases and tools for miRNA analysis using RNA-Seq.
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2.7 Circular RNAs

Among the many ncRNAs species, circRNAs are characterized by a stable, 
closed-loop structure formed through back-splicing via an upstream splice acceptor 
(SA) site, in contrast to the downstream SA sites of standard linear splicing [146]. 
CircRNAs span exonic, intronic, intergenic regions, UTR (5′ and 3′), and lncRNA 
loci [147], and they are stable, conserved, non-random, as well as cell-type and 
tissue-specific [146]. Additionally, circRNAs have been found in all life domains, 
and, similar to miRNAs, their orthologous expression facilitates discovery, valida-
tion, and functional assignments. CircRNAs are transcribed at higher levels than 
mRNA in specific cells, tissues, or conditions, and they are expressed during chro-
matin remodeling [146] and in some disease-specific contexts [148]. For example, 
14.4% of actively transcribed genes in human fibroblasts produced circRNAs [147], 
and due to their orthologous, tissue-specific, and spatial expression tendencies, cir-
cRNAs may be employed as plausible biomarkers in disease control and treatment 
[148]. Biological functions for circRNAs continue to be discovered and currently 
include scaffolding for RNA-binding proteins; formation of regulatory complexes; 
promotion of translation; regulation of protein function; and target decoys for 
other regulatory molecules, like miRNAs [149].

Similar to the methods used in experimental validation of linear mRNA, 
circRNA-forming exons can be determined by RNA-Seq, back-splice junction 
specific quantitative PCR (qPCR), northern blot, microarrays, RNA fluorescence 
in situ hybridization (FISH), Chromatin immunoprecipitation (ChIP), RNA 
immunoprecipitation (RIP), RNA pulldown, mass spectrometry, in vitro synthe-
sis, luciferase reporter assays, and denaturing PAGE. RNase-R treated poly(A) 
mRNA samples and polyadenylated RNA-Seq are ideal for enriching and identi-
fying circRNAs. These circRNAs can also be characterized by utilizing overex-
pression (cis/trans), knockdown (RNAi machinery), or knockout (CRISPR/Cas9 
system) strategies. Based on the presence of a back-splice junction spanning 
locations in the RNA-Seq reads, researchers can characterize various types of 
circRNAs in their data [150] with a variety of bioinformatics tools and databases 
available (Table 7).

The biogenesis mechanisms and functional roles of plants are different from 
animals, but their expression-specific patterns are very similar [161]. Plant cir-
cRNAs have been implicated in stress-induced (dehydration, chilling, high-light, 
etc.) expression patterns [162]. Intricate regulatory roles of circRNAs in ripening 
through ethylene signaling pathway has been investigated using integrated RNA-
Seq and bioinformatics analysis in tomato [163]. The role of circRNAs in the fat 
deposition by regulating adipogenic differentiation and lipid metabolism has been 
determined by studying subcutaneous adipose tissues of two pig breeds using 

Databases Tools

S.No Database Citation S.No Tool Citation

1 Circbank [151] 1 circRNAprofiler [152]

2 exoRBase [153] 2 CircPlant [154]

3 PlantcircBase [155] 3 CircCode [156]

4 circRNADb [157] 4 Circ RNA wrap [158]

5 circBase [159] 5 Circtools [160]

Table 7. 
Some databases and tools in finding circular RNAs from RNA-Seq data.
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RNA-Seq and bioinformatics and their potential to serve as early diagnostic markers 
in treating metabolism-related diseases [164]. CircRNAs found on four casein genes 
in the bovine mammary gland harbor complementary sites for specific miRNAs, 
suggesting their regulatory role in milk protein synthesis. These circRNAs can be 
used to fine-tune the gene expression of casein genes, thus producing high-quality 
milk protein and enhanced milk in dairy cows [165].

2.8 Single-cell RNA-Seq

Cell-specific transcriptome changes are critical for understanding single cells or 
groups of cells throughout tissues, organs, and organ systems. Single-cell RNA-Seq 
(scRNA-Seq) can be used to measure individual gene expression in a single cell 
and the distribution of expression levels across a cell population. It was first devel-
oped to undertake the whole-transcriptome analysis of a single mouse blastomere 
[166] and gained widespread popularity recently due to sequencing chemistry 
advancements and the steep decline in sequencing costs since 2014. scRNA-Seq can 
illuminate the complex interplay between intrinsic cellular processes and extrinsic 
stimuli in cell fate determination [167], and scRNA-Seq can facilitate novel discov-
ery species or regulatory processes, which may serve as tools in biotechnology and 
medicine [168]. Many scRNA-Seq protocols have been developed, often differing 
in their methods used for cell isolation [169], but studies continue to be limited by 
the difficulties of culturing certain cell types and by issues involving accurate and 
precise viable cell isolation [170].

Different methodologies are available in generating single-cell RNA-Seq data 
from a biological sample. However, most of these methodologies utilize these 
steps: 1) digest the tissue, i.e., single-cell dissociation; 2) isolate single cells by 
plate-based or droplet-based methods; 3) capture intracellular mRNA and prepare 
the massively multiplexed library with sample-specific cellular barcodes or unique 
molecular identifiers (UMI); 4) sequence on an NGS platform to generate raw 
reads. Several different platforms and frameworks (stand-alone, cloud-based, and 
interactive web-based) are presently available for conducting the bioinformatics 
analysis of scRNA-Seq data, and a few examples for each platform are listed in 
Table 8. The majority of scRNA-Seq frameworks partially or fully follow these 
steps: QC; alignment; mapping QC; cell QC; normalization; batch correction; 
imputation; cell cycle-assignment; feature selection; dimensionality reduction and 
visualization; pseudotime; cell type annotation; DGE; unsupervised clustering; and 
network analysis.

scRNA-Seq has been a valuable tool in determining differential gene expression 
by using gene cluster analyses among heterogeneous cell types and understanding 
their complex interactions and cellular responses in woody plants [186]. The use 

Databases Web-based scRNA-tools Cloud-based scRNA-tools

S.No Database Citation Tool Citation Tool Citation

1 SC2disease [171] scMappR [172] GranatumX [173]

2 Curated database [174] CHARTS [175] Cumulus [176]

3 PanglaoDB [177] alona [178] SCelVis [179]

4 scRNA-tools database [180] SingleCellNet [181] PscB [182]

5 scRNASeqDB [183] Single Cell Explorer [184] Falco [185]

Table 8. 
A few popular databases and tools for single-cell RNA-Seq analysis.
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of scRNA-Seq and single-cell gene regulatory networks (scGRN) frameworks in 
studying complex agronomic traits and resistance to various stresses in crops have 
been proposed [187]. Gene expression profiles among subcellular populations of 
the skeletal muscle and its development in chicken have been determined using 
scRNA-Seq, which are important in producing quantity and quality meat in poultry 
[188]. In sea urchins, using scRNA-Seq, different cell types commonly seen during 
the embryo development have been identified by the selective inhibition of Delta/
Notch and Wnt responsive pathways [189]. Studying the infant and adult cattle 
mammary glands (MG) with scRNA-Seq, dairy scientists developed a MG-specific 
single-cell atlas, determined the cell-type heterogeneity, and identified a novel 
myofibroblast that can differentiate into luminal epithelial cells, and has potential 
role in lactation and immunity [190].

2.9 Metatranscriptomics

Metatranscriptome refers to the total RNA sequences (protein-coding and 
non-coding) collected from a location or source or body, which corresponds to the 
expression profiles of prokaryotic and eukaryotic species found in natural environ-
ments such as soil, sea, space, gut, airways, feces, and skin [191]. Metagenomics 
focuses on the overall genetic composition of the microbial community, while 
metatranscriptomics provides more profound insights about the genes expressed, 
their abundance, diversity, differential expression, and aims to address the func-
tional, metabolic, and pathway diversity present in a microbial community [192]. 
Metatranscriptome is a dynamic entity that can detect gene expression variability 
with time and environmental changes [193]. Metatranscriptomics is a culture-free 
profiling method that helps understand the structure (i.e., microbial communi-
ties and taxonomic analysis), function (DEGs, enrichment, and annotation), and 
mechanisms (adaptability, selection, and domestication) of complex microbial 
communities [194]. It also helps in understanding RNA-mediated regulation and in 
deriving biological signatures associated with microbial communities.

The experimental methods for analyzing RNA, such as northern blot, qRT-PCR, 
microarrays, cDNA clone-based Sanger sequencing, and RNA-Seq, are also used 
for studying and analyzing metatranscriptomes. The main challenges in molecular 
metatranscriptome methods include low total RNA yield commonly found in 
environmental samples, high rRNA content in total RNA and its removal, and the 
fidelity of microbial mRNA isolated. Metatranscriptome analysis using RNA-Seq 
can distinguish and handle metadata [195], whereas the previous transcript analysis 
approaches failed to: categorize or catalog metadata, understand community-wide 
gene expression, and determine functional diversity. Most of the metatranscrip-
tome tools utilize one or more steps from the following: 1) preprocessing (QC, 
trimming, and filtering), 2) Binning, 3) Mapping or de novo assembly, 4) taxonomic 
units, 5) species profiling, 6) DEGs, 7) annotation and function assignment, and 
8) pathway or network analysis [193]. The key challenges in metatranscriptome 
analysis are: the lack of comprehensive datasets from diverse groups of samples and 
their associated metadata; the scarcity of metagenomic reference data; the small 
overlap between metagenome and metatranscriptome datasets; rRNA filtering; and 
the enrichment of low-abundance mRNAs. Some databases and tools routinely used 
to access or analyze metatranscriptomes are presented here (Table 9).

Though several applications have been documented in the recent past, only 
selected studies from agriculture and food disciplines are presented here. In 
agriculture, metatranscriptome analysis can help us find beneficial and harmful 
rhizosphere-associated microbes specific to plant and soil types. Thus, it allows 
us to enrich associated rhizosphere microbes that promote crop health and yield. 
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Metatranscriptomics has been used in deciphering multifunctional genes and 
enzymes linked with the degradation of contaminants in the crop rhizosphere 
[206]. Metatranscriptomic profiling helped to determine the variation in the 
rumen’s microbial composition based on the host feed efficiency in beef cattle 
[207]. In the food industry, metatranscriptomics can be applied to detect food 
contamination, toxins, and metabolic activities of food-associated microbes and 
enhance food safety, quality, and function. Metatranscriptomics has been used in 
finding insights into the core functional microbiota of soy sauce aroma type liquor 
production in the fermentation process under varied environmental conditions 
[208]. Metatranscriptome analysis has been used to study the community dynamics 
of bacteria in fermented foods [209]. Using metatranscriptome sequencing followed 
by 16S and 18S rRNA analysis, temperature-induced changes in the structural 
landscape and functional diversity of the mesophilic and thermophilic food web 
communities respond to two contrasting temperatures in the rice fields have been 
observed [210].

2.10 Systems biology/biological network analysis

The ultimate goal of RNA-Seq analysis is to understand the underlying biological 
processes and mechanisms linked with gene expression and regulation. From mol-
ecule to biospheres, biological systems can be represented as networks of pairwise 
relationships between biological entities throughout various levels of organization. 
The interactions between biomolecules can be: direct, via physical contact, or indi-
rect, via causal chains or mere correlations. Interactomes that are commonly stud-
ied include networks between: DNA–RNA; DNA-Protein; RNA–RNA; RNA-Protein; 
and Protein–Protein. Theoretically, any network of words can be merged with these 
interactions, as some elements are shared by both, like common gene, transcript, 
or protein identifiers. The systems biology approach examines the overall structure 
and function of a cell or an organism, rather than looking at its components as 
isolated events [211]. The systems biology approach considers gene expression of 
an organism or an interaction as a sum of individual genes, sets of genes, and other 
compounding factors [212]. Gene regulatory networks (GRNs) and co-expression 
analyses are common elements while studying a biological problem as a system 
rather than as an individual problem [213].

Given the growing avalanche of RNA-Seq data along with the wealth of 
network analysis (NA) programs, there are tremendous opportunities to find 
networks within and between their available datasets, guiding them toward valu-
able insights, future validation experiments, and a more holistic understanding 
of their research. NA of RNA-Seq data can illuminate the interrelationships and 
functional associations [214] between several elements: regulators/co-regulators, 

Databases Tools

S.No Database Citation S.No Tool Citation

1 SILVA [196] 1 QIIME 2 [197]

2 Greengenes [198] 2 SAMSA2 [199]

3 eggNOG database [200] 3 ASaiM [201]

4 NCBI RefSeq [202] 4 MG-RAST [203]

5 SEED Subsystems [204] 5 MetaTrans [205]

Table 9. 
Some widely used databases and tools in metatranscriptomics analysis.
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upstream/downstream sequences, and genic features; differentially expressed 
subnetworks; global connectivity among genes and gene networks. Often com-
bined with the aforementioned biomolecular interactions, a more abstracted view 
of biological systems can be provided by semantic networks, which involve the 
relationships between categories of biological meaning, commonly ontological, 
that have been assigned to the biomolecules. Traditional systems biology relied 
on mathematical and statistical models. In contrast, modern systems biology 
depends on computer models that simulate an organism’s entire biological sys-
tems by considering all components [215]. So, these approaches depend on the 
constant selection of predictors, building models, and testing. Thus, it allows us 
to move from descriptive science to data science in providing a holistic answer to 
the biological question under investigation. Thankfully, the inherent complexity 
of systems biology is ameliorated by the availability of many open-source tools 
to reconstruct and visualize networks (a few tools and databases are presented 
in Table 10).

RNA-Seq data from a plant (maize) and a pathogen (Aspergillus flavus) interac-
tion has been studied as a system to determine GRNs and co-regulated expression 
patterns in early processes of infection in imparting resistance to A. flavus in maize 
[226]. Systems biology approach has been utilized in unraveling the complex 
interactions among transcriptomic, metabolomic, and organoleptic components in 
tomatoes using MetGenMAP, MapMan, and Cytoscape tools [227]. Also, the role of 
systems biology in building genome-scale metabolic models (GEMs) for character-
izing plant-pathogen (Phytophthora infestans) interaction, and disease prevention 
using cellular localization and network reconstruction tools such as KEGG, LocTree 
3, and RAVEN [228]. In the food industry, a systems biology framework, Allergen 
Peptide Browser that stores and catalogs mass spectrometry data has been used in 
detecting food allergens such as egg, casein, nuts, gluten, wheat, soy, and fish in 
food products by employing selected and multiple reaction monitoring approach 
[229]. Systems biology’s role in deciphering underlying common molecular path-
ways that regulate adipose tissue growth and development in chicken has been 
determined by examining gene modules, functional enrichment, and network 
analysis (KEGG, Cytoscape, and WGCNA package) [230].

3. Conclusions

In conclusion, a combination of multi-omic approaches and bioinformat-
ics tools developed to date has unquestionably expanded the scope of RNA-Seq 
applications and improved our understanding of gene expression data. In addition 
to the applications discussed in this chapter, fusion gene analysis, RNA editing, 

Databases Tools

S.No Database Citation S.No Tool Citation

1 DualSeqDB [216] 1 pARACNE [217]

2 KBase [218] 2 SCENIC [219]

3 MODOMICS [220] 3 SERGIO [221]

4 EcoCyc [222] 4 GRNBoost2 [223]

5 doRiNA [224] 5 dynGENIE3 [225]

Table 10. 
A few databases and tools for systems biology analysis using RNA-Seq.



Applications of RNA-Seq in Biology and Medicine

16

Author details

Venkateswara R. Sripathi*, Varsha C. Anche, Zachary B. Gossett  
and Lloyd T. Walker
Center for Molecular Biology, Alabama A&M University, Normal, AL, USA

*Address all correspondence to: v.sripathi@aamu.edu

RNA interference, and Epitranscriptomics can also be used to understand novel 
functions of the gene, complex interactions, and the interplay between coding and 
non-coding regions during gene regulation. In the near future, we will be able to: 
sequence transcriptomes from complex environments, study more comprehensive 
RNA datasets using data science tools, functionally validate predicted genes using 
gene-editing technologies, which will positively impact the food and agriculture 
sectors.
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