121 research outputs found

    Nigeria research situation analysis on orphans and other vulnerable children

    Full text link
    This item is archived in the repository for materials published for the USAID supported Orphans and Vulnerable Children Comprehensive Action Research Project (OVC-CARE) at the Boston University Center for Global Health and Development.Addressing the needs of orphans and vulnerable children (OVC) and mitigating negative outcomes of the growing OVC population worldwide is a high priority for national governments and international stakeholders across the globe who recognize this as an issue with social, economic, and human rights dimensions. Assembling the relevant available data on OVC in one place, and acknowledging the gaps that still exist in our knowledge, will assist policy makers and program implementers to make evidence-based decisions about how best to direct funding and program activities and maximize positive outcomes for children and their caretakers.This Research Situation Analysis on OVC presents a program-focused summary of available information on: • Current policies, programs and interventions designed and implemented to assist them • Gaps in these policies, programs and interventions • OVC research conducted between 2004-2008 • Gaps in the Nigerian OVC evidence base. The Brief analyzes the available data for critical gaps in the national response and our understanding about whether current interventions are fulfilling the needs and improving the lives of vulnerable children. The report then recommends actions required to increase the knowledge base for improving the effectiveness and impact of OVC programs.The USAID | Project SEARCH, Orphans and Vulnerable Children Comprehensive Action Research (OVC-CARE) Task Order, is funded by the U.S. Agency for International Development under Contract No. GHH-I-00-07-00023-00, beginning August 1, 2008. OVC-CARE Task Order is implemented by Boston University. The opinions expressed herein are those of the authors and do not necessarily reflect the views of the funding agency

    Evidence of horizontal urban heat advection in London using 6 years of data from a citizen weather station network

    Get PDF
    Recent advances in citizen weather station (CWS) networks, with data accessible via crowd-sourcing, provide relevant climatic information to urban scientists and decision makers. In particular, CWS can provide long-term measurements of urban heat and valuable information on spatio-temporal heterogeneity related to horizontal heat advection. In this study, we make the first compilation of a quasi-climatologic dataset covering six years (2015–2020) of hourly near-surface air temperature measurements obtained via 1560 suitable CWS in a domain covering south-east England and Greater London. We investigated the spatio-temporal distribution of urban heat and the influences of local environments on climate, captured by CWS through the scope of Local Climate Zones (LCZ)—a land-use land-cover classification specifically designed for urban climate studies. We further calculate, for the first time, the amount of advected heat captured by CWS located in Greater London and the wider south east England region. We find that London is on average warmer by about 1.0 ∘C–1.5 ∘C than the rest of south-east England. Characteristics of the southern coastal climate are also captured in the analysis. We find that on average, urban heat advection (UHA) contributes to 0.22 ± 0.96 ∘C of the total urban heat in Greater London. Certain areas, mostly in the centre of London are deprived of urban heat through advection since heat is transferred more to downwind suburban areas. UHA can positively contribute to urban heat by up to 1.57 ∘C, on average and negatively by down to −1.21 ∘C. Our results also show an important degree of inter- and intra-LCZ variability in UHA, calling for more research in the future. Nevertheless, we already find that UHA can impact green areas and reduce their cooling benefit. Such outcomes show the added value of CWS when considering future urban design

    Evidence of horizontal urban heat advection in London using 6 years of data from a citizen weather station network

    Get PDF
    Recent advances in citizen weather station (CWS) networks, with data accessible via crowd-sourcing, provide relevant climatic information to urban scientists and decision makers. In particular, CWS can provide long-term measurements of urban heat and valuable information on spatio-temporal heterogeneity related to horizontal heat advection. In this study, we make the first compilation of a quasi-climatologic dataset covering 6 years (2015–2020) of hourly near-surface air temperature measurements obtained via 1560 suitable CWS in a domain covering south-east England and Greater London. We investigated the spatio-temporal distribution of urban heat and the influences of local environments on climate, captured by CWS through the scope of Local Climate Zones (LCZ) – a land-use land-cover classification specifically designed for urban climate studies. We further calculate, for the first time, the amount of advected heat captured by CWS located in Greater London and the wider south east England region. We find that London is on average warmer by about 1.0 °C to 1.5 °C than the rest of south-east England. Characteristics of the southern coastal climate are also captured in the analysis. We find that on average, urban heat advection (UHA) contributes to 0.22±0.96 °C of the total urban heat in Greater London. Certain areas, mostly in the centre of London are deprived of urban heat through advection since heat is transferred more to downwind suburban areas. UHA can positively contribute to urban heat by up to 1.57 °C, on average and negatively by down to -1.21 °C. Our results also show an important degree of inter- and intra-LCZ variability in UHA, calling for more research in the future. Nevertheless, we already find that UHA can impact green areas and reduce their cooling benefit. Such outcomes show the added value of CWS when considering future urban design.publishedVersionPeer reviewe

    DNA Extraction Method Development for Ocular Tissues

    Get PDF
    Purpose: DNA extraction kits are traditionally developed to work with liquid tissues such as blood, saliva, and swabs, but some have been proposed to work with solid tissues. Somatic variation in cancers can be important for tumor subtyping and treatment guidance, including ocular tumors. Additionally, epigenetic marks such as 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are tissue-specific and change in disease states, particularly evident in diabetic retinopathy and age-related macular degeneration. Commercial DNA extraction kits are available from several vendors, but the various kits have different strengths and weaknesses, and the removal of PCR inhibitors will vary with each kit. This project investigates the yield and purity of DNA from ocular tissues using commercial DNA extraction kits. Methods: Cornea, neural retina, RPE/choroid layer, optic nerve, and capsular bag were collected and aliquoted into 15 mg aliquots. Extractions were performed using the following kits: DNEasy Blood and Tissue Kit (Qiagen;), GeneJET Genomic DNA Purification Kit (ThermoFisher Scientific), Monarch HMW DNA Extraction Kit for Tissue (New England Biosciences), and genomicPrep Mini Spin Kit (Cytiva). DNA was quantified using the Qubit Fluorometer and molecular weight was checked by agarose gel. Several more kits are currently being tested. Results: All four kits yielded high molecular weight DNA (above 20 kbp). The Monarch HMW kit yielded DNA with significantly higher molecular weights. The DNA yields per milligram of tissue were highest using the DNEasy Blood and Tissue Kit for optic nerve, neural retina, and RPE/choroid. The yield was highest for the cornea using the genomicPrep Mini Spin Kit. Only the genomicPrep Mini Spin Kit yielded sufficient DNA for quantification from the capsular bag, and total yields were minimal (600 ng or less). Additional kits are currently being tested, but initial results indicate that several commercial kits will be sufficient for DNA extraction of ocular tissues. Further work is needed to purify epithelial cells and stem cells from the intraocular lens. Conclusions: Of the kits tested, all are sufficient to obtain significant amounts of DNA from all ocular tissues aside from the capsular bag. The Monarch HMW yielded the highest molecular weight, but significantly lower quantities of DNA than the other kits, indicating that it may not be ideal for most purposes. Protocol development for the capsular bag is still underway
    • …
    corecore