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Integrated and Sequence-Ordered BAC-
and YAC-Based Physical Maps for the Rat Genome
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As part of the effort to sequence the genome of Rattus norvegicus, we constructed a physical map comprised of
fingerprinted bacterial artificial chromosome (BAC) clones from the CHORI-230 BAC library. These BAC clones
provide ∼13-fold redundant coverage of the genome and have been assembled into 376 fingerprint contigs. A yeast
artificial chromosome (YAC) map was also constructed and aligned with the BAC map via fingerprinted BAC and P1
artificial chromosome clones (PACs) sharing interspersed repetitive sequence markers with the YAC-based physical
map. We have annotated 95% of the fingerprint map clones in contigs with coordinates on the version 3.1 rat
genome sequence assembly, using BAC-end sequences and in silico mapping methods. These coordinates have
allowed anchoring 358 of the 376 fingerprint map contigs onto the sequence assembly. Of these, 324 contigs are
anchored to rat genome sequences localized to chromosomes, and 34 contigs are anchored to unlocalized portions of
the rat sequence assembly. The remaining 18 contigs, containing 54 clones, still require placement. The fingerprint
map is a high-resolution integrative data resource that provides genome-ordered associations among BAC, YAC, and
PAC clones and the assembled sequence of the rat genome.

[Supplemental material is available online at www.genome.org.]

The rat has historically been an important model organism for
physiological, pharmacological, and biochemical studies. Build-
ing on the wealth of experimental data and methodology, the rat
has become a preferred model for systems biology and the study
of many complex diseases (James and Lindpaintner 1997; Ait-
man et al. 1999; Stoll et al. 2001; Jacob and Kwitek 2002; Yokoi
et al. 2002; Olofsson et al. 2003). Here, we describe the creation
of major new resources for genomic studies in the rat: (1) the
construction of a bacterial artificial chromosome (BAC) finger-

print map spanning the rat genome; (2) the construction of a
yeast artificial chromosome (YAC) map covering the rat genome;
and (3) integration of both maps with each other and with the
assembled rat genomic sequence. The integrated resources pro-
vide deep clone coverage and long-range clone continuity for
most of the rat genome. This has important implications for
studying regions that are not represented by finished sequence
and functional genomic approaches that rely on the availability
of sequence-anchored clones.

We undertook the construction of the Rattus norvegicus BAC
map as part of the international effort to sequence the entire
genome (Rat Genome Sequencing Project Consortium 2004). The
BAC map was constructed to provide a resource from which
clones could be selected for sequencing in a manner similar to

9Corresponding author.
E-MAIL jschein@bcgsc.ca; FAX (604) 877-6085.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.2336604.
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that for other large-scale sequencing projects, such as those for
human (Lander et al. 2001; McPherson et al. 2001), mouse (Wa-
terston et al. 2002), Drosophila melanogaster (Adams et al. 2000;
Hoskins et al. 2000), rice (Barry 2001), and Arabidopsis thaliana
(The Arabidopsis Genome Initiative 2000). To generate the BAC
map, we used BAC fingerprinting-based methods (Marra et al.
1997; Schein et al. 2004) by which other maps had been con-
structed, such as those for human (McPherson et al. 2001),
mouse (Gregory et al. 2002), and Arabidopsis (Marra et al. 1999;
Mozo et al. 1999). Fingerprint maps provide information about
the relationships between individual BAC clones in the physical
map, and this information can be exploited to select clones for
sequencing in a manner that limits sequence redundancy while
ensuring coverage of the genome.

The rat sequence assembly (Rnor3.1; http://www.hgsc.bcm.
tmc.edu/projects/rat/assembly.html) is 2.75 Gb in size and was
generated using a hybrid whole-genome shotgun (WGS) and
BAC-based approach (Rat Genome Sequencing Project Consor-
tium 2004). The genome is sequenced to approximately seven-
fold genome coverage, with 40% of read coverage generated from
∼21,000 BAC clones. Fingerprint map-based selection of rat BAC
clones for sequencing was initiated essentially concurrently with
the fingerprinting efforts. Several hundred BAC clones were se-
lected from the map on a weekly basis as fingerprinting pro-
gressed and the map evolved. This differs from the hybrid WGS/
BAC-based approach used for the mouse (Waterston et al. 2002),
in which fingerprinting was substantially complete prior to se-
lection of BAC clones for sequencing. The rat sequence is slightly
larger than that of mouse, which is currently estimated to be 2.6
Gb (http://www.ncbi.nih.gov/genome/guide/mouse).

For construction of the YAC-based physical map, we made
use of interspersed nuclear elements that are found in the ge-
nomes of a wide variety of mammals (Deininger 1989). The most
prevalent interspersed repetitive sequence element in the rat ge-
nome is the so-called identifier (ID) element (Kim and Deininger
1996). ID elements are members of a family of SINEs found in the
rodent genome (Deininger 1989). ID elements consist of a core
domain with an average length of 75 bp containing an internal
RNA polymerase III promotor, a 10–40-bp poly(A) region, and 5�-
and 3�-flanking regions (Deininger 1989; Kim et al. 1994; Kass et
al. 1996). The core region of ID elements is considered to be
ancestrally derived from alanine tRNA (Daniels and Deininger
1985), and the copy numbers of ID elements are markedly dif-
ferent between species (Sapienza and St Jacques 1986; Anzai et al.
1987; Kass et al. 1996). Among rodent species, the rat has the
highest copy number of ID elements, which is estimated to be
five times the number found in the mouse genome (Deininger
1989; Kass et al. 1996; Ono et al. 2001), suggesting that the rat ID
elements were rapidly amplified after the rat diverged from a
common ancestral rodent. We used interspersed repetitive se-
quence (IRS) PCR technology to generate markers for physical
mapping of the rat genome. A single primer was used to amplify
sequences that are flanked by ID repeat elements in the rat. We
solely used IRS-PCR on low complexity probes, that is, individual
BAC or PAC clones. PCR products generated this way can directly
be used as markers, that is, probes that can be hybridized to
Southern blots. Moreover, each mapped marker at the same time
anchors a specific BAC or PAC to the genome from which the
individual probe was derived. The generation of large numbers of
IRS markers in this way is rapid and cheap, because there is no
requirement to sequence markers or to design locus-specific
primers.

We have integrated the two physical maps by including into
the BAC fingerprint map BAC and PAC clones linked by IRS-PCR
markers to the YAC map. Both the BAC map and the YAC map
have been anchored to version 3.1 of the rat genome sequence

assembly using end sequences for fingerprinted BAC clones. The
anchored BAC clones provide an ordered, high-resolution, re-
dundant clone set spanning the sequence assembly, providing
the research community with easy identification and access to
BAC clones spanning regions of interest in the rat genome.

RESULTS

Generation of IRS-PCR Amplicons
for the YAC-Based Map
IRS-PCR amplicons were generated using a single primer comple-
mentary to the 5�-sequence of rat ID-consensus sequence from
individual RPCI-32 BACs and RPCI-31 PACs. In total, 30,144 BAC
clones and 27,648 PAC clones were randomly selected for IRS-
PCR amplification. This number of clones represents approxi-
mately onefold genome coverage for each library, respectively.
We obtained 9378 positive IRS-PCR products for BAC clones and
7601 for the PAC clones. From these, we randomly chose 8397
IRS markers tagging individual BACs (4311) and PACs (4086),
which were subsequently used for radiation hybrid mapping and
for the identification of YAC clones with overlapping DNA con-
tent. We combined two mapping methods to gain information
about the proximity of marker loci within the rat genome.

Radiation Hybrid Mapping
Individual IRS-PCR markers were screened against the rat T55
whole-genome radiation hybrid (RH) panel, consisting of 106
rat-on-hamster somatic hybrid cell lines (Watanabe et al. 1999).
The observed average marker retention frequency of 28.9% is
consistent with previously published results for the T55 panel
(Steen et al. 1999; Watanabe et al. 1999; Scheetz et al. 2001). We
produced comprehensive BAC and PAC placement maps by map-
ping the derived markers against the framework-map intervals
(Steen et al. 1999; Watanabe et al. 1999) using multipoint maxi-
mum likelihood analysis. This resulted in a placement map of
5301 BAC- and PAC-derived markers. Moreover, we produced an
independent radiation hybrid framework map using the travel-
ing-salesman problem (TSP) approach (Applegate et al. 1998;
Agarwala et al. 2000). The radiation hybrid framework maps pro-
duced with the two approaches, however, were highly consis-
tent, indicating that data quality and not algorithmic approach is
the critical factor in producing high-quality maps. Framework
markers of the TSP map that were placed with odds higher then
1:1000 on the maximum likelihood map, show in 99.2% the
same relative order on both maps. Adjacent framework markers
were spaced at an average interval of ∼23 centiRay (cR) (2.4 Mb;
Steen et al. 1999; Watanabe et al. 1999). In all, markers derived
from 2739 BACs and 2562 PACs could be localized with high
confidence onto the rat genome by radiation hybrid mapping.
Thus, the location of 5301 PACs and BACs can be inferred from
the radiation hybrid map.

Marker Content Mapping
For each localized BAC and PAC clone, we additionally identified
overlapping YAC clusters by screening two YAC libraries (Cai et
al. 1997; Haldi et al. 1997). Each of the 8397 BAC- and PAC-
derived markers was individually hybridized against filters con-
taining IRS-PCR-amplified three-dimensional YAC pools. The
spotting of IRS-PCR amplified YAC pools and subsequent hybrid-
ization allowed an efficient filter-based screening approach of the
∼92,000 clones represented in the two YAC libraries. YAC-based
marker content mapping with each of the markers would other-
wise amount to >7 � 108 individual assays. About two-thirds of
all hybridizations (5803) were successful. Unsuccessful hybridiza-
tions were largely caused by experimental reasons related to the
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hybridization process. We observed on av-
erage 8.8 positive YAC hybridization signals
in an individual hybridization experiment.
This number is significantly lower than ex-
pected considering that both libraries com-
bined cover the rat genome ∼20-fold (Cai et
al. 1997; Haldi et al. 1997). This phenom-
enon has previously been observed (Schalk-
wyk et al. 2001) and was noticed for both
YAC libraries screened here and is largely
caused by the introduced complexity apply-
ing a three-dimensional YAC library pool-
ing strategy. In total, the physical map pro-
vides access to 51,323 YAC clones that are
directly linked to 5803 BACs and PACs
(3266 and 2583, respectively).

YAC Map Construction
The IRS markers were generated from indi-
vidual BAC and PAC clones representing
low-complexity templates. YAC libraries
were screened by hybridization-based as-
says to identify clones containing a given
locus. Nearby loci tend to be present in
many of the same clones, allowing proxim-
ity to be inferred. Marker-content linkage
can be detected over distances of ∼800 kb,
given the average insert size of the YAC library used here. Hybrid
cell lines, each containing many chromosomal fragments pro-
duced by radiation breakage, are screened to identify those hy-
brids that have retained a given locus. Nearby loci tend to show
similar retention patterns, allowing proximity to be inferred. Ra-
diation hybrid linkage can be detected for distances of ∼2–3 Mb,
given the average fragment size of the RH panel used here. The
two methods were used to produce independent maps and were
subsequently combined to produce an integrated map. Because
RH mapping can detect linkage over large regions, comprehen-
sive RH maps spanning all chromosomes can be assembled with
a few thousand loci. The order of the loci can be inferred from the
extent of correlation in the retention patterns, although esti-
mates on fine-structure order are not precise. These methods can
thus provide “top-down” information about global position in
the genome. In contrast, marker-content mapping provides “bot-
tom-up” information. It reveals tight linkage among loci but is
useful only over short distances and does not provide extensive
long-range connectivity across chromosomes.

For the construction of a physical map and assembly of con-
tigs, 51,323 YAC clones that gave a positive hybridization signal
were considered. This number was successively pruned with con-
siderable care toward chimeric clones, an inherent problem with
any YAC library (Green et al. 1999), leaving 31,757 clones (see
Methods). We constructed a map of each chromosome by inte-
grating the YAC-linkage information with the known radiation
hybrid map positions of the IRS markers using the co2 software
package (Hudson et al. 1995). Doubly linked contigs were iden-
tified, and then single-linkage information was used to join dou-
bly linked contigs known to lie nearby. The maps were closely
inspected to identify apparent conflicts in order between radia-
tion hybrid and YAC-based maps. The final map contains 5803
loci distributed across the 20 autosomes and the X-chromosome.
The lack of coverage for the Y-chromosome is due to the fact that
the T55 RH panel has been derived from a female donor. The
final map was binned into 605 contigs. The markers and chro-
mosomes are described (Table 1), and a representative map from
a portion of Chromosome 10 is shown (Fig. 1). All data (includ-
ing representations of the contigs on each chromosome, tables

containing all data) are freely available (http://www.mdc-berlin.
de/ratgenome or http://www.molgen.mpg.de/∼ratgenome).
With an average insert size of 150 kb for each BAC (Osoegawa et
al. 2004) and PAC (Woon et al. 1998; http://bacpac.chori.org)
clone, this data set spans 835 Mb of genomic sequence, corre-
sponding to roughly 27% of the rat genome cloned in RPCI-32
BACs and RPCI-31 PACs. Assuming an average YAC size of ∼0.8
Mb (Cai et al. 1997; Haldi et al. 1997), this map corresponds to
more than eightfold coverage of the rat genome, providing long-
range connectivity and coverage for the vast majority of the rat
genome.

Clone Fingerprinting
Clones for the BAC-based map were fingerprinted using an aga-
rose gel-based methodology (Marra et al. 1997; Schein et al. 2004)
and the restriction enzyme HindIII. The CHORI-230 BAC library
was the primary source of clones for construction of the finger-
print map. Fingerprints were attempted on all CHORI-230
clones, and 185,438 (91%) were successful (Table 2). Of the
clones that failed to produce fingerprints, 2264 were attributed to
empty wells in the library plates, 2880 exhibited poor growth
characteristics resulting in insufficient quantities of BAC DNA for
fingerprinting, three had their fingerprints manually removed
because of poor primary data quality, and 12,167 were rejected
by our automated band calling software, BandLeader (Fuhrmann
et al. 2003). The latter group included nonrecombinant clones.
Automated quality checks (see Supplemental material available
online at www.genome.org) on the fingerprint gels detected two
duplicated gels (0.1%) and one gel (0.05%) with duplicate lanes.
Fingerprinting of the clones on the affected gels was repeated to
correct the errors. All successful fingerprints were imported into
FPC (Soderlund et al. 1997, 2000; Ness et al. 2002) for assembly
and further analysis. The average insert size for CHORI-230 Seg-
ment 1 clones was 213 kb and 165 kb for Segment 2 clones (Table
2), matching closely that determined by pulsed field gel electro-
phoresis (Osoegawa et al. 2004). The distribution of clone insert
sizes derived from the fingerprint size data indicated that 99% of
all CHORI-230 clones were <280 kb. We manually reviewed the
fingerprints of 2141 outlier clones >280 kb. A total of 999 of these

Table 1. Distribution of Loci and Contigs on Genome-Wide YAC Map

Chromosome

Physical
length
(Mb)

Average
spacing

(kb)
Loci on
RH map

Loci on marker-
content map

(total loci)
Assembled

contigs

1 268.1 402 609 666 65
2 258.2 733 326 352 37
3 171.0 481 304 355 39
4 187.4 568 324 330 32
5 173.1 439 355 394 50
6 147.6 553 273 267 33
7 143.1 409 304 350 38
8 129.1 378 326 341 45
9 113.6 437 227 260 22

10 110.7 260 383 425 31
11 87.8 535 163 164 21
12 46.6 165 259 282 24
13 111.3 435 219 256 23
14 112.2 503 183 223 21
15 109.8 572 171 192 23
16 90.2 458 178 196 20
17 97.3 470 183 207 21
18 87.3 487 165 179 24
19 59.2 438 127 135 15
20 55.3 339 154 163 21
X 160.8 2429 68 66 8
Total 2719.7 468 5301 5803 605
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Figure 1 View of the YAC-based physical map in a region of rat Chromosome 10.
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were identified as problematic, likely resulting either from well-
to-well cross-contamination or from partial HindIII digestion,
and were removed from the data set. In total, 184,439 CHORI-
230 clones (91%) passed all of our laboratory and data quality
checks and were incorporated into the fingerprint database.

Fingerprints were subsequently attempted on clones from
the RPCI-32 BAC and RPCI-31 PAC libraries sharing IRS marker
content with clones in the YAC map. Successful fingerprints were
obtained for 2774 (98%) and 2476 (97%) of clones from these
libraries, respectively (Table 2). These clones were fingerprinted
to provide a basis for integration of the YAC map with the fin-
gerprint map. The final number of fingerprinted clones deposited
into the fingerprint database was 189,689.

Automated Fingerprint Assembly
Automated fingerprint assemblies were performed using FPC
software (Soderlund et al. 1997, 2000; Ness et al. 2002). Default
parameters were used with the exception of the cutoff value for
the Sulston score (Sulston et al. 1988), which was selected to
avoid false-positive clone overlaps and thus minimize the assem-
bly of contigs containing clones from more than one genomic
region. This resulted in conservative assemblies consisting of
many contigs, each containing highly related clones. The initial
automated fingerprint assembly was performed when less than
onefold genome coverage had been collected. Thereafter, full as-
semblies were performed on a weekly basis as fingerprinting pro-
gressed. The resultant assemblies, containing contigs of highly
related clones, were used to select BAC clones to be sequenced at
the Baylor College of Medicine Human Genome Sequencing Center
(BCM HGSC) as part of the rat genome sequencing effort (Rat Ge-
nome Sequencing Project Consortium 2004). The final automated
build performed with the complete set of 184,439 CHORI-230

fingerprints resulted in the assem-
bly of 11,274 contigs (Table 3).

Editing the CHORI-230
Automated Fingerprint
Assembly
The CHORI-230 map assembly was
subjected to manual review and ed-
iting to identify and correct errors
within the automated assembly.
Editing was performed using tools
within FPC, assisted by externally
scripted tools. Clone order within
contigs was refined, chimeric con-
tigs were identified and misassem-
blies were corrected. Fingerprint
comparisons using only clones at

the ends of contigs were performed using higher (less-stringent)
cutoff scores to identify singleton clones that extended contigs
and to identify potential contig merges. Potential contig merges
were examined to evaluate consistency of the fingerprint data at
the merge point. Merges were made where supported by the fin-
gerprint data.

To assist with the contig merging process we leveraged the
sequence similarity between the mouse and rat genomes, a simi-
lar approach to that used by Gregory et al. (2002), in which the
human sequence assembly was used to inform contig merges in
the mouse fingerprint map. We used BLAST (W. Gish; http://
blast.wustl.edu) to compare BAC-end sequences derived from
CHORI-230 clones (see Methods) to the MGSC Version 3 mouse
genome sequence assembly (http://www.ncbi.nih.gov/genome/
guide/mouse/). The resultant coordinates derived for rat BAC
ends on the mouse sequence assembly were used to align the
fingerprint map contigs to the mouse genome. Manual editing
had reduced the number of contigs in the map to 7943, and 7844
of these could be assigned to mouse chromosomes. The contigs
were then ordered by their midpoints on the assembly. Contigs
overlapping by sequence coordinates were merged into a single
contig. Based on these sequence coordinate criteria, a total of
7256 contigs were merged to form 846 contigs. A small, artificial
gap was introduced between adjacent clone groups, now called
“subcontigs,” comprising previously independent contigs. The
subcontigs were ordered within each of the 846 contigs accord-
ing to their mouse chromosome assignments. This process re-
duced the overall number of contigs in the map to 1533. We
expected that differences in genomic organization between the
mouse and rat genomes would result in the joining of some con-
tigs that did not represent adjacent regions in the rat genome,
but anticipated that these would be identified and resolved once
the rat genome sequence assembly was available for comparison.

Manual review and editing con-
tinued subsequent to the mouse as-
sembly-based merges. Within the
mouse assembly-merged contigs,
adjacent subcontigs were examined
to determine if fingerprint overlaps
could be detected. Where supported
by the fingerprint data, gaps between
adjacent subcontigs were removed
and the clone groups joined. Addi-
tional merges between contig ends
were also made based on finger-
print comparisons. This process fur-
ther reduced the overall number of
contigs in the map to 634 (Table 3).

Table 2. Fingerprinting Details

Library
Attempted
fingerprints

Fingerprints
in map

Enzyme used
to construct

library
Avg. insert
sizea,b (kb)

Avg. number
of HindIII

fragmentsb

Estimated
genome

coveragec

CHORI-230
Segment 1 92,160 84,993 EcoRI 213 57 6.7�
Segment 2 110,592 99,446 Mbol 165 45 6.0�

RPCI-31 2541 2476 Mbol 131 34 0.1�
RPCI-32 2820 2774 EcoRI 163 42 0.2�
Total 208,113 189,689 186 50 13.1�

aAs determined by fingerprint data.
bFor clones in the fingerprint map.
cComputed by multiplying the number of clones from each library (or library segment) by the average
insert size of the clones, and dividing by the total sequence assembly size (2.75 Gb).

Table 3. Fingerprint Map Statistics for the Automated Assembly, Manually Edited Map, and
Final Merged Map

Map Contigs
Clones in
contigs Singletons

Mean
contig sizea

Median
contig sizea

Largest
contigb

Automated
assemblyb 11,274 171,297 13,142 15 10 425

Manually edited 634 176,171 13,518 278 (4.6 Mb) 133 (2.7 Mb) 3990 (57.2 Mb)
Final merged 376 179,794 9895 453 (8.4 Mb) 172 (4.4 Mb) 4179 (60.9 Mb)

aAs determined by the number of clones in the contig. The length of the contig is given in parentheses.
bThis assembly contained only CHORI-230 clones.
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Automated Insertion of RPCI-31 and RPCI-32 Clones
Into Edited Fingerprint Map Contigs
To maximize the number of anchors between the YAC map and
the fingerprint map, we incorporated into edited fingerprint con-
tigs as many of the YAC-associated RPCI-31 and RPCI-32 finger-
printed clones as possible. The RPCI-31 PAC clone fingerprints
were added to the fingerprint database while the editing process
was in progress, and a total of 1597 of these remained as single-
tons in the edited fingerprint map. The RPCI-32 clone finger-
prints were added as singletons to the fingerprint database sub-
sequent to completion of manual editing. We used a computa-
tional approach to place RPCI-31 and RPCI-32 singletons into
edited map contigs, resulting in the placement of 1009 RPCI-31
and 2614 RPCI-32 fingerprints into the edited map contigs. Fin-
gerprints of clones that remained as singletons contained too few
fragments to meet the required criteria for accurate placement
into contigs. In total, 4502 (86%) of the RPCI-31 and RPCI-32
fingerprints were localized to contigs in the edited map.

Anchoring Fingerprint Map Contigs
to the Rat Sequence Assembly
The availability of both a fingerprint map and sequence assembly
for the rat genome provides the opportunity to derive a direct
link from BAC clones to specific sequence regions, and vice versa.
This linkage is useful in several applications, including identifi-
cation of clones for use in functional studies of genes identified
within the sequence, determination of the sequence content of
BAC clones of interest identified through other means, such as
BAC filter hybridizations, and access to sequencing substrates
representing regions of interest in the genome where current
sequence coverage or quality is insufficient for analysis. Exami-
nation of the linkage between the map and the sequence is likely
to identify BAC clones spanning gaps in the sequence assembly.
Additionally, map contig overlaps can be identified by sequence
where the extent of overlap is insufficient to detect with confi-
dence using fingerprint similarity alone. Furthermore, any dis-
crepancies in the fingerprint map and the sequence assembly
locations would identify potential misassemblies in either the
map or the sequence. Analysis and resolution of these discrep-
ancies would serve to improve the quality of both the sequence
assembly and the fingerprint map. Given that we anticipated
some errors in map assembly caused by use of the mouse se-
quence to identify map contig merges, this latter application was
of specific interest to us.

We therefore undertook the correlation of the fingerprint
map with the rat genome sequence assembly once it became
available, with the aim of maximizing the resolution of the cor-
relation by determining sequence coordinates for as many map
clones as possible. We used a combination of BAC-end sequence
coordinates and in silico mapping methods to align BAC clones
on the genome sequence assembly and used these clone align-
ments to localize map contigs onto the sequence.

In Silico Mapping Coordinates
The in silico mapping approach used both fingerprint map data
and BAC-end sequence alignment data to position map clones
onto the sequence assembly. The first step in the in silico map-
ping process was identification of a sequence region in which a
clone was likely to be located (a sequence “neighborhood”) based
on BAC-end sequence coordinates (see Methods) of flanking
clones in the same map region (see Supplemental material for
details on the derivation of sequence neighborhoods). The neigh-
borhoods provide a low-resolution estimation of the position of
fingerprint map clones on the genomic sequence.

In the second step of the process, more precise localization
of the clones within their sequence neighborhoods was obtained
by aligning clone fingerprints with sequence-derived (in silico)
restriction maps formed from the neighborhoods (see Supple-
mental material). We filtered these alignments to remove poor-
quality in silico coordinates, using various criteria including the
fraction of matched and unmatched fragments between the in
silico anchor and the fingerprint. High-quality in silico align-
ments were identified for 157,527 clones (Supplemental Table 1).

Comparison of paired end sequence coordinates to those
generated by the in silico method showed that in 3% of the cases
these coordinates did not overlap (Table 4). Mismatches in chro-
mosome assignment accounted for two-thirds of these discrep-
ancies. Comparison of coordinates derived from single end-
sequence coordinates to in silico coordinates showed a discrep-
ancy of 60%. The majority of these errors were due to
nonoverlapping coordinates on the same chromosome, and only
5% were due to chromosome assignment mismatch. The reduced
overlap concordance between the single end sequence coordi-
nates and the in silico coordinates is primarily due to the com-
paratively much smaller size of the single end coordinates. This is
illustrated by the fact that 89% of the nonoverlapping single end
coordinates were within 100 kb (less than the average length of
a BAC) of the in silico coordinates.

Table 4. Comparison Between BAC-End Sequence Coordinates and In Silico or Neighborhood

Coordinate type

Paired end sequence
82,813

Single end sequence
54,293

None
52,583

Total Correlationa Total Correlationa,b Total

In silico anchor
157,473 73,305 70,944/900/1461 (97%/1%/2%) 45,102 17,850/25,133/2119 (40%/55%/5%) 39,066

Neighborhood only
21,976 6257 5831/50/376 (93%/1%/6%) 6876 5862/379/635 (85%/6%/9%) 8843

None
10,240c 3251 2315 4674

Only clones in the map are listed here. Paired end sequence coordinates located on different chromosomes or >500 kb apart on the same
chromosome have been removed.
aCategories are the number of clones with overlapping coordinates/number clones with nonoverlapping coordinates/number of clones with
coordinates on different chromosomes. The percentages for each category, calculated as end sequence versus in silico mapping or end sequence
versus neighborhood, are given in parentheses.
bAn in silico anchor was considered to be nonoverlapping with a single end sequence coordinate if it fell outside of the bounds of the in silico anchor.
c9895 of these are singletons.
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The in silico mapping process is prone to greater positional
error in unfinished portions of the assembly than in regions of
finished sequence. This is because fingerprint fragments may fail
to match in silico digest fragments that contain sequence errors
or undetermined base pairs and therefore do not faithfully rep-
resent HindIII restriction site sequences or actual restriction frag-
ment sizes. Thus, we expect that in silico coordinates derived
from regions of the assembly containing gaps would have a nega-
tive impact on the concordance between BAC-end sequence co-
ordinates and in silico coordinates. We also expect that end se-
quence alignment errors and laboratory tracking errors contrib-
ute to the identified discrepancies between end sequence and in
silico coordinates; however, the accuracy of the in silico mapping
methodology itself needs to be considered.

Assessing the Accuracy of In Silico Mapping Coordinates
To investigate the accuracy of our in silico mapping algorithm,
we examined the mapping of a subset of BAC clones that had
both in silico and paired end sequence-based coordinates. This
control set of 19,223 clones met our criteria for sequence quality
and clone size. We found that the positional uncertainty of the in
silico coordinates was on the order of two to three HindIII frag-
ments at the end of each clone. The median difference in the left
position was �4 kb and in the right position 9 kb. The negative
left-end difference and positive right-end difference reflect the
fact that the in silico mapping algorithm was designed conser-
vatively to avoid overestimating the left or right end of the clone,
and therefore was generally internal to the BAC-end sequence
coordinates. The in silico mapping accuracy is therefore good
when anchoring to high-quality sequence, but is expected to
have lower accuracy in regions of poor sequence quality.

Determination of Fingerprint Map Contig Coordinates
The BAC-end and in silico coordinates were used together to
derive locations for fingerprint map clones on the genome se-
quence to localize the map contigs to the assembly. We deter-
mined sequence coordinates for 93% of all map clones. Of all
clone coordinates, 55% were based on end sequence coordinates,
and the remaining 45% were based on in silico anchors (see
Methods). The sequence coordinates were used to identify groups
of contiguously overlapping clones aligned to the sequence.
These regions of contiguous clone alignments linked the corre-
sponding map contigs to locations on the sequence assembly.
Using this approach, 616 of the 634 edited fingerprint map con-
tigs could be aligned to regions on the sequence assembly (see
Methods). The remaining unanchored 18 contigs contained a
total of 54 clones, with most having two to five clones.

Inconsistencies Between the Fingerprint Map
and Sequence Assembly
To identify and investigate differences between clone order in
the fingerprint map and on the assembled sequence, we aligned
these two data sets using the contig anchor positions. Contigs
with alignments to a single contiguous region of the sequence
assembly were considered to have consistent map and sequence
localizations. We included in this category contigs with a single
alignment to assembled chromosomes (1–20, X) plus additional
alignments to portions of the assembly without chromosome
locations (chrUn). We did not categorize alignments to chrUn
sequences as an indication of a potential misassembly because
these sequences represent regions of the genome assembly that
were not localized to chromosomes, rather than sequences that
had been incorrectly assembled. We found that 554 of the 616
anchored contigs, representing 2.37 Gb of the sequence assem-

bly, aligned to single regions of the assembled chromosomes (1–
20 and X). Of these 554 contigs, 19 have additional alignment to
chrUn sequences, which suggests chromosome locations for
these unlocalized regions of the assembly. An additional 24 con-
tigs aligned exclusively to 11 Mb of chrUn sequence.

We found 38 contigs with alignments to at least two disjoint
sequence regions on the assembled chromosomes, with 12 of
these contigs having additional localization to chrUn sequences.
To ascertain the nature of these inconsistencies, we visually ex-
amined the affected regions of each of the 38 contigs in FPC and
evaluated the strength of the clone overlap using the finger-
prints. Of these inconsistencies, we found 19 to be caused by
incorrect contig joins that were made based on the mouse se-
quence assembly. In these cases, the segmentation of the contig
on the assembly was between map subcontigs, indicating a join
that had been made based only on the sequence but could not be
supported by the fingerprint data. These were resolved by split-
ting the contigs along their sequence region boundaries. In 9 of
the 38 contigs, either some of the segments in question con-
tained very few clones (<10 clones) or the entire contig itself was
very small (<10 clones), and we ascribe the segmentation to in-
correct BAC-end sequence coordinates or incorrectly mapped
contig clones. We found 10 of 616 anchored map contigs that
appeared to be correctly constructed but were segmented on the
sequence assembly. These inconsistencies are detailed in Supple-
mental Table 2, and their segment locations are also indicated.
The total size of fingerprint contigs with visually verified incon-
sistencies with the rat genome assembly was 95 Mb, or ∼3.5% of
the assembled genome. Resolution of these inconsistencies will
require further examination, including analysis of the sequence
assembly in the affected regions.

Merging Fingerprint Map Contigs
Using Sequence Information
The sequence localizations determined for the contigs and single-
tons in the fingerprint map suggested contig locations for single-
ton clones and potential merges between closely adjacent map
contigs. We used the sequence localizations and fingerprint data
to join contigs that were adjacent and for which overlap was
discernable. Local clone order was guided by the clone order in
the edited fingerprint map and global subcontig, and contig or-
der was guided by the sequence region localizations. Edited map
contigs were merged using sequence information in 172 in-
stances in which sequence overlap between edge clones was de-
tected. In an additional 96 cases, we found merges could be made
by fingerprint data supported by sequence overlap. Overall, the
median sequence overlap between two map contigs in these cases
was 70 kb. The result was a merged fingerprint map with 376
contigs, with a mean contig size of 8.4 Mb (Table 3). Sequence
coordinates additionally provided contig locations for 3623
singleton clones.

Of the 376 map contigs, 324 were anchored to the chromo-
some assemblies and provide coverage for 2.69 Gb (99%) of the
assembled chromosomes. The contigs are separated on average
by 110 kb (Fig. 2; Supplemental Fig. 1). Some of these contigs also
contain regions that are anchored to chrUn sequences, totaling 9
Mb. The contig assignment of these clones was maintained with
the anchored contigs to which they belonged, thereby assigning
a chromosome location to the associated chrUn sequences. A
further 34 contigs provide 51 Mb of coverage of the unlocalized
assembly. The remaining 18 contigs were unanchored, and their
original structure was preserved. Because there may be genomic
regions that are not represented by BACs, such as telomeric or
centromeric portions that are difficult to clone or maintain in
Escherichia coli or regions with an unusual distribution of HindIII
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sites, our coverage estimate will likely require refinement as the
precise size and position of sequence regions become identified.

Anchoring YAC Map Contigs to the Fingerprint Map
and the Rat Sequence Assembly
Hybridization data derived from IRS-PCR markers link RPCI-32
BACs and RPCI-31 PACs to at least one YAC in each of the 605

contigs in the YAC map. On average, there were two BACs or
PACs associated with each YAC, and each BAC or PAC was asso-
ciated on average with nine YACs. The mean number of BACs
and PACs linked to each YAC contig was seven, with a median
value of three. In total, 90% of YAC contigs had between 1 and 24
associated BACs or PACs. In the alignment of the YAC map to the
fingerprint map we discarded chimeric YACs, and used only

Figure 2 Representation of sequence positions of map contigs in the manually edited fingerprint map (green) and merged map (blue) on the first 100
Mb of Chromosomes 1–5. Contigs colored green are localized to a unique contiguous chromosomal interval. The orange color indicates that the contig
was incorrectly joined in the fingerprint map and was subsequently split to form two contigs. If a contig is localized to disparate regions of the sequence
assembly and appears to be correctly constructed, its glyph is red. To the left of the contig tracks is shown a histogram of the density of anchored clones,
cytogenetic band positions, and the sequence scale.
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those with unique YAC contig and chromosome assignments. Of
the 605 YAC contigs, 598 were anchored to the fingerprint map
through RPCI-31 and RPCI-32 clones in common to both maps.
We used end sequence or in silico coordinates of RPCI-31 and
RPCI-32 clones associated with the YAC map to anchor 14,288
YACs to the sequence assembly. Using these anchored YACs, we
determined sequence locations for 577 YAC contigs (95%). The
consistency between clones in the YAC map and the rat sequence
assembly is shown in Figure 3. Views of the integration between
the fingerprint map, YAC map, and the sequence assembly are
available at http://mkweb.bcgsc.ca/rat/mapview.

DISCUSSION
The rat genome fingerprint map we have constructed comprises
376 contigs incorporating 95% of the clones in the map. Posi-
tional annotations to the sequence assembly were derived for
95% of all clones in contigs, using BAC-end sequence and in
silico coordinates. Using these annotations, we identified over-
lapping map clones providing coverage for 99% of the sequence
assembly localized to chromosomes (chr1–20, X), and for 78% of
the unlocalized sequence assembly regions (chrUn). This is likely
an underestimate of the sequence coverage by the map due to the
conservative nature of the in silico derived coordinates and the
effect of unfinished regions of the sequence assembly on the
anchoring process. The high degree of integration between the
fingerprint map and the sequence assembly is perhaps not un-
expected given that the methodology used to generate the rat
genome sequence used BAC clone as well as whole genome shot-
gun based reads (Rat Genome Sequencing Project Consortium
2004); however, it does indicate that essentially complete ge-
nome coverage can be achieved from a clone-based physical
map. The high percentage of map clones with sequence coordi-
nates represents a degree of integration between a fingerprint
map and sequence assembly that is unique for a large genome.
This relationship ties together the BAC-based and sequence-
based resources that, together, will be of use to a broad commu-
nity of researchers.

Given that fingerprint map assembly and sequence assem-
bly are independent processes, the two resources can be used for
cross-validation once they have been interrelated. The finger-
print map can be used to evaluate the accuracy of the assembly
and aid in the assembly of repeat-rich regions and other areas
known to confound assembly programs, and the sequence as-
sembly can be used to evaluate the accuracy of fingerprint map
merges and to identify contig overlaps not recognized by finger-
print comparisons. The degree to which the fingerprint map can
be used to guide the construction of another genome-ordered
resource, such as a sequence assembly, largely depends on the
contiguity of the map. The current paradigm in fingerprint map
construction begins with fingerprint generation, followed by au-
tomated fingerprint assembly and manual editing, assisted where
possible by automated contig orientation and merging based on
a closely related reference genome. In the case of the rat finger-
print map, automated and manual editing improved the conti-
guity by more than an order of magnitude (Table 3). This opti-
mized fingerprint map was, in turn, used to guide efficient selec-
tion of BAC clones to fill sequence assembly gaps (Rat Genome
Sequencing Project Consortium 2004). In addition, unlocalized
portions of the rat sequence assembly can be linked to chromo-
somes because of their association with fingerprint contigs an-
chored to chromosome assemblies. However, the manual editing
phase of map construction is time-consuming and requires dedi-
cated and highly trained staff. The timely application of finger-
print map data to enhance the sequence assembly process will
therefore require continued efforts to streamline the map-

building process and, ideally, to convert the editing and merging
processes required for map contiguity into a series of purely au-
tomated steps, particularly in the absence of a closely related
genome resource.

Clone-based laboratory methods maintain importance in
the study of large genomes through applications such as fluores-
cent in situ hybridization (FISH; du Manoir et al. 1993; Joos et al.
1994; Levsky and Singer 2003) and comparative genomic hybrid-
ization (CGH; Kallioniemi et al. 1992; Houldsworth and Cha-
ganti 1994; Lapierre et al. 1998; Pinkel et al. 1998; Snijders et al.
2001; Fiegler et al. 2003). The generation of high-depth finger-
print maps will therefore continue to be a desired component of
the generation of integrated genomic resources. For example, the
detailed localizations of nearly all clones in the rat fingerprint
map on the sequence assembly serve as an entry point into gen-
erating clone-based resources for genomic regions of interest.
Moreover, the integrated map and assembly will facilitate the
creation of a BAC-based whole-genome array for the rat, which
we are planning to undertake to complement an existing whole-
genome array for human (http://www.bcgsc.ca/lab/mapping/
bacrearray/human; M. Krzywinski, in prep.) and a clone set for
mouse (M. Krzywinski, unpubl.), which is currently undergoing
validation.

METHODS

Large Insert Libraries
Clones from the following libraries were used: Rat YAC ICRF/
BWH/Liege SHRSP (MPMGy916; Cai et al. 1997) and Rat YAC
WI/MIT (WIBRy933; Cai et al. 1997; Haldi et al. 1997) libraries,
obtained from the Resource Center Primary Database (RZPD;
http://www.rzpd.de); RPCI-32 (Osoegawa et al. 2004) rat BAC
library and RPCI-31 rat PAC library (Woon et al. 1998), obtained
from BACPAC Resources (http://bacpac.chori.org); CHORI-230
rat BAC library (Osoegawa et al. 2004), obtained from BACPAC
Resources (http://bacpac.chori.org). The CHORI-230 library was
constructed from female brown Norway DNA (BN/SsNHsd/
MCW) and is comprised of two segments. Segment 1 was derived
from genomic DNA partially digested with EcoRI and EcoRI
Methylase, and Segment 2 was derived from DNA partially di-
gested with MboI (Osoegawa et al. 2004).

IRS-PCR
IRS-PCR was performed with a single rat ID element-derived
primer (IDR; 5�-CCACTGAGCTAAATCCCCAACCCC-3�) in a 60-
µL reaction volume. The PCR reaction mix contained 1 µg of Rat
IDR primer, 250 µM each dNTP, 0.2 U of Taq polymerase, 50 mM
KCl, 1.5 mM MgCl2, 35 mM Tris base, 15 mM Tris-HCl, 0.1%
Tween 20, and 15 µM cresol red. PCR conditions were initial
denaturation for 4 min at 94°C, followed by 35 cycles of 30 sec at
94°C, 60 sec at 65°C, 3 min at 72°C, and a final extension for 5
min at 72°C.

Nylon Filter Production
Nylon filters for YAC marker content mapping were spotted in
duplicate in a 5 � 5 pattern as described previously (Gösele et al.
2000). IRS-PCR products of the 106 T55 RH clones were trans-
ferred onto nylon membranes by Southern blotting as described
(Gösele et al. 2000).

Probe Preparation, Hybridization, and Filter Analysis
IRS-PCR products were excised from low melting point agarose
gel and melted by heating in 20 µL of 1� TE buffer. Then 18 µL
of melted IRS-PCR fragment was further used for labeling with 20
µCi of [�-32P] by random hexamer priming (Feinberg and Vogel-
stein 1984). Hybridizations against three-dimensional rat YAC
pool filters and rat radiation hybrid filters were carried out over-
night at 65°C in 15 mL of Church buffer (0.5 M Na2HPO4 at pH
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7.2, 5% SDS, 2.5 mM EDTA at pH 8.0). Filters were washed for 30
min at 65°C in 2� SSC, 0.1% SDS, followed by a second wash for
30 min at 65°C in 0.5� SSC, 0.1% SDS. Filters were exposed to
autoradiographic films for 1–3 d. To minimize errors in the ra-
diation hybrid data vectors produced, radiation hybrid mapping
data were generated in duplicate. Autoradiograms were marked,
checked for errors, and subsequently entered directly into a da-
tabase. The database was implemented with MySQL 3.22.32. In-
put tools used a PHP module in conjunction with an Apache Web
server. HTML forms were used to record the textual experimental
details (filter number, hybridization date, data quality assess-
ment). A Java applet using HTTP allowed hybridization results to
be entered (or edited) graphically by clicking on positions in a
grid representing the spotting pattern. Positive filter coordinates
were converted into clone names by the server using a deconvo-
lution routine written in C, which assigned a weight of 3 to
complete, unambiguous positive clones, 2 to complete, ambigu-
ous addresses (i.e., where there is more than one positive clone in
a block of eight plates), and 1 to incomplete addresses (e.g., row
and column, but no plate). Only clones with weight 3 were used
for contig building (31,757).

Radiation Hybrid Map Placement
Placement of all markers was carried out with respect to the pre-
viously published radiation hybrid framework maps (Steen et al.
1999; Watanabe et al. 1999) using RHMAPPER software (Stein
1998). Marker placement was compared with a framework map
order that was calculated using the traveling-salesman problem
(TSP) approach using the Lin-Kernighan heuristic from the CON-
CORDE package (Applegate et al. 1998). We then checked the
relative ordering of these conserved segments for consistency
against the Rat Genome Database (RGD) map.

Because TSP transformations are strictly valid only for hap-
loid, error-free data, we re-evaluated the map likelihoods and
intermarker distances with the radiation hybrid maxlink pro-
gram (Boehnke et al. 1991).

YAC Map Construction
The co2 software package (http://www-genome.wi.mit.edu) was
designed to integrate map information from multiple sources. It
searches marker orders to maximize a scoring function. The scor-
ing function awards a high score for YACs hitting a pair of adja-
cent markers, assesses large penalties for violating the genetic
map order, and awards smaller penalties for introducing gaps or
breaks in clones. The costs are optimized to approximate the log
likelihood of the given order, so that the chosen marker is con-
sistent with as much of the data as possible.

BAC-End Sequences
BAC-end sequences for CHORI-230 and RPCI-32 clones were gen-
erated at The Institute for Genomic Research (TIGR) and are pub-
licly available from http://www.tigr.org/rat/bac_end_intro.
shtml. BAC-end sequences were available for 164,768 CHORI-
230 clones in the fingerprint map. Of these, 129,088 have paired
end sequences, and 35,680 have single end sequences.

BAC Clone Fingerprinting
An agarose-gel-based fingerprinting methodology (Marra et al.
1997; McPherson et al. 2001; Schein et al. 2004) was used to
generate HindIII fingerprints of clones from the CHORI-230 BAC
library, RPCI-32 BAC library, and RPCI-31 PAC library. Briefly,
bacterial clones were inoculated for culturing in 96-well format
directly from the 384-well library plates. The bacterial clones
were cultured overnight, and bacterial pellets were collected by
centrifugation. BAC DNA was isolated by alkaline lysis purifica-
tion, digested with HindIII, and the resulting restriction frag-
ments were resolved via electrophoresis on 1.2% agarose gels.
Each gel contained 121 lanes, comprised of all 96 samples from a
single microtiter plate as well as 25 marker lanes containing a
mixture of commercial size standards (Analytical Marker DNA
Wide Range, Promega; and Marker V, Roche Applied Science).

Gels were stained postelectrophoresis with SYBR Green I (Mo-
lecular Probes, Inc.), and digital images were acquired using a
Molecular Dynamics Fluorimager 595. Positions of lanes on the
gel images were identified (lane tracked) interactively using the
program Image (Sulston et al. 1988; http://www.sanger.ac.uk/
Software/Image). The lane-tracked gel images were analyzed by
our automated restriction fragment identification software, Ban-
dLeader v2.3.3 (Fuhrmann et al. 2003), to identify and size the
restriction digest fragments. HindIII fragments derived from se-
quences internal to the vector were subsequently removed from
the fragment data. Fragment sizes <600 bp were also removed
from the fragment data because of the variability in detection of
fragments <600 bp.

Automated checks were performed to identify potential
loading or plate tracking errors. These are described in detail in
the Supplemental material.

Automated Fingerprint Assembly
Automated assemblies of the fingerprint data were performed
using a parallelized version of FPC (Soderlund et al. 1997, 2000;
Ness et al. 2002). Assemblies were performed on a weekly basis as
fingerprint data accumulated and were made publicly available
(http://www.bcgsc.ca/lab/mapping/data). The automated FPC as-
sembly bins similar clones together into contigs, where similarity
is assessed according to a user-defined cutoff value for the Sulston
score (Sulston et al. 1988). Clones that do not have fingerprint
similarity scores with other clones in the database below this
defined value are not placed into contigs, and are called single-
tons. Additionally, the assembly algorithm attempts to identify
the nonredundant set of clones within each contig, and these are
called canonical clones. The last automated assembly that con-
tained only CHORI-230 fingerprint data was performed using the
following parameters: cutoff 10�17, tolerance 7, min bands 3,
bury 0.100, best 10, CpM Off. A copy of this automated assembly
was made and subjected to manual review and editing, and this
became the official, edited map.

Manual Editing of the Automated Fingerprint Assembly
Manual review and editing of the rat fingerprint assembly was
performed using the following general approach, called the path-
finder process: (1) review and correction of clone order within
each contig, and identification and correction of chimeric fin-
gerprint contigs; (2) extension of contig ends using singleton
clones and identification of contig merges, using fingerprint
comparisons for contig end clones with a reduced stringency
from that used for the original assembly; (3) alignment of contigs
to the sequence assembly of a closely related genome to assist
with identification of contig merges; and (4) additional editing
and analysis of contig terminal ends to ensure that all possible
merges between contigs were made. All clone positions and con-
tig compositions were edited within the FPC interface with the
assistance of several scripted external tools used to evaluate the
integrity of the contigs.

To assist with intercontig orientation and contig merges
during the manual editing process, rat contig merges were made
based on rat BAC-end sequence comparisons to the MGSC Ver-
sion 3 mouse genome sequence assembly (http://www.ncbi.
nih.gov/genome/guide/mouse). The 306,779 masked end se-
quences for CHORI-230 BAC clones were compared with the
mouse assembly by WU-BLAST (W. Gish; http://blast.wustl.edu)
using the following parameters: kap M = 17 N = �21 X = 140
S2 = 340 gapX = 240 gapS2 = 425 Q = 51 R = 22 e = 1e-06 top-
comboN = 2 nonnegok novalidctxok gapsepsmax = 2000, requir-
ing matches that were �50 bases long and keeping only the best
hit for each BAC end. There were 195,989 ends from clones pre-
sent in the rat FPC clone database that hit the mouse assembly,
representing 134,815 unique clones. The positions on the assem-
bly of each BAC end were treated as map positions, and contigs
were assigned to mouse chromosomes based on majority rule.
The orientation of each contig relative to the assembly was
found, and contig orientations were reversed where necessary.
The contigs were then ordered by their midpoints on the assem-
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bly. The boundaries of each contig were determined after remov-
ing spurious BAC-end hits that were far from the contig mid-
point, giving an unreasonable size to the contig. The size in base
pairs of a contig was restricted to 4000 times the number of
clones in the contig, with a minimum size of 800 kb allowed.
BAC-end “markers” were removed from the ends until the con-
tigs were less than this maximum size. Overlapping contigs were
joined into a single contig, provided at least two BAC-end se-
quences supported the contig positions.

Automated Insertion of RPCI-31 and RPCI-32 Singleton
Clones Into Edited Fingerprint Map Contigs
Where possible, the automated fingerprint assembly containing
clones from all three libraries was used to inform the placement
of RPCI-31 and RPCI-32 singleton clones in the edited map. For
each RPCI-31 or RPCI-32 singleton clone in a contig in the au-
tomated assembly, a neighborhood of adjacent clones was deter-
mined. The corresponding neighborhood was identified in the
edited map, and the singletons were inserted into the most suit-
able location. Clones for which a neighborhood could not be
determined were compared with all clones within the edited map
to determine a location. Details on the insertion process can be
found in the Supplemental material.

BAC-End Sequence Alignment
to the v3.1 Rat Genomic Sequence
Genome sequence assembly coordinates for CHORI-230 end se-
quences were obtained from the BCM HGSC (ftp://ftp.hgsc.
bcm.tmc.edu/pub/analysis/rat/bacendmap.dat). Sequence as-
sembly coordinates for the RPCI-32 clones were determined by
aligning the end sequences to the genomic sequence. The end
sequences were first masked with RepeatMasker (A.F.A. Smit and
P. Green, unpubl.; ftp://ftp.genome.washington.edu/RM/
RepeatMasker.html) using the �rod option. The masked se-
quences were then searched against the genomic sequence using
blastall (J. Ryan, unpubl.; http://genome.nhgri.nih.gov/blastall)
with the following options: -p blastn -e 10e-20 -v 20 -b 20. The
best hit for each end sequence was identified. Only those hits
confirming the chromosome assignment on the YAC map were
considered. Paired end coordinates spanning regions >500 kb
were not used.

There were end sequence alignments for 228,871 CHORI-
230 BAC-end sequences (86,483 clones with paired end align-
ments and 55,905 clones with single end alignments) and 2943
alignments for RPCI-32 BACs (1160 clones with paired end align-
ments and 623 clones with single end alignments). We found
that the paired end coordinates for 1180 of the CHORI-230
clones mapped to different chromosomes, and that paired end
coordinates for 1230 CHORI-230 clones and 72 RPCI-32 clones
were >500 kb apart on the same chromosome. These were re-
moved from the data set as they represented likely artifacts. We
therefore were left with genomic sequence positions for 141,689
clones, including paired end positions for 85,161 (60%) clones
and single end positions for 56,528 (40%) clones. Of the 141,689
clones with end sequence-based coordinates, 137,106 were also
in the fingerprint map.

Derivation of Sequence Neighborhoods
for Fingerprint Map Clones
The sequence neighborhood for each contig clone was deter-
mined using the five nearest fingerprint map neighbors with
BAC-end coordinates on the rat assembly (see Supplemental ma-
terial). The neighborhood represents the region of the genome
assembly from which the BAC insert is derived. The neighbor-
hood for each clone was calculated independently of any BAC-
end sequence coordinates associated with the clone itself. This
was purposefully done to allow for cross-validation between the
genomic location predicted by the sequence coordinates and that
predicted by the fingerprint map.

BAC Sequence Localizations Derived
by In Silico Mapping
The experimental fingerprint of each clone with a sequence
neighborhood was compared with the in silico digest fingerprint
of the corresponding sequence. The entire neighborhood was
first sampled using a sliding window of 120 consecutive frag-
ments. Once the best matching region was found, a second
round of comparisons was performed between the experimental
fingerprint and a sliding subwindow within the matching region.
The position of the clone within the region was determined on
the basis of the number and arrangement of matching fragments
within the best matching subwindow. See the Supplemental ma-
terial for details.

Validation of In Silico Localizations
To validate the accuracy of the in silico anchoring approach, we
identified a test clone set comprised of clones that (1) had paired
BAC-end sequence coordinates and in silico anchors with the
two coordinates overlapping; (2) had a fingerprint size of 121–
237 kb, corresponding to 90% of all fingerprinted clones; (3) had
a difference between BAC-end sequence and fingerprint size of
<10 kb; and (4) had <10 kb of undetermined nucleotides in their
sequence neighborhoods. The difference in the left and right
ends, as well as the difference in size between the BAC-end se-
quence and in silico coordinates was calculated and used as a
measure of validation.

Determination of Clone Coordinates
on the Rat Sequence Assembly
The level of correspondence between the BAC-end sequence and
in silico or neighborhood coordinates was used to determine
which type of coordinate would be used for each clone in sub-
sequent analysis. This was done to limit the number of potential
inconsistencies arising from clone tracking errors and end se-
quence misalignments. Coordinates based on BAC-end sequence
localization were used when no in silico anchor could be found
or when the in silico anchor overlapped with the BAC-end se-
quence localization. In silico anchors were used when no BAC-
end sequence localization was available or when the BAC-end
sequence localization did not overlap with the in silico anchor.
When the two coordinate types did not overlap, the in silico
anchors were used because they were consistent with the clone
fingerprints and the position of the clones in the edited finger-
print map. For clones with only one type of coordinate, those
coordinates were used to localize the clone.

Anchoring Rat Fingerprint Contigs
to the Rat Sequence Assembly
Each map contig was delineated into groups of clones that over-
lapped by sequence, using the sequence coordinates determined
as defined above. These structures, called sequence regions, rep-
resented groups of clones from the fingerprint contigs that
mapped to the same region of the sequence assembly. To avoid
effects caused by spurious alignments, such as those from indi-
vidual clones with end sequence coordinates inconsistent with
their map positions, we did not consider sequence regions that
contained fewer than three clones that were located on a differ-
ent chromosome than another region from the same contig with
more than 10 clones. Some regions of map contigs were exclu-
sively comprised of clones without sequence coordinates, and in
these cases the contig structure was used to inform the sequence
placement. Multiple sequence regions within 3 Mb of one an-
other derived from the same contig were considered to be con-
tiguous if bridged by overlapping clones. In this case, overlap was
inferred if any of the following applied to the bridging clone set:
(1) adjacent clones had a Sulston score <10�10; (2) adjacent
clones shared >80% of their fragments; or (3) there were >10
conserved bands across five left and five right neighbors. In ad-
dition, we constructed sequence regions from singletons with
end sequence coordinates.

BAC- and YAC-Based Maps for the Rat Genome
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Contig Splits and Merges Based
on Rat Sequence Assembly Anchors
Contig and singleton regions were ordered and oriented with
respect to their anchored locations on each rat chromosome as-
sembly. Each ordered list was scanned computationally to iden-
tify contigs with discrepant anchors, and for contigs or singleton
regions that could be joined. Contigs containing regions map-
ping to more than one rat sequence region were manually exam-
ined to determine if the fingerprints were internally consistent. If
the fingerprint data were internally consistent, the contig was
not altered. If the fingerprint data were inconsistent (e.g., the
discrepancy coincided with a subcontig boundary), the contig
was split. However, contigs that had sequence regions anchored
to unordered, unlocalized regions of the sequence assembly
(chrUn) were not split if the contigs were otherwise anchored to
a single chromosomal region, or if manual review of the contigs
indicated that the contig was internally consistent. Contigs for
which all regions mapped to chrUn sequences were not altered.
Refer to the Supplemental material for additional details.

Contigs located adjacent to each other on the sequence were
considered to be potentially overlapping, and the regions were
analyzed to determine if contig overlap could be established. Two
contigs were considered to overlap if (1) their anchored regions
overlapped by sequence; (2) the best fingerprint match between
the three edge clones from each of the contigs had a Sulston score
<10�7 (60% shared fragments), and the matching clones match
their respective contig neighbors better than 10�7; or (3) a subset
of three edge clones can be found from each contig for which
fingerprints created from shared fragments between the edge
clones have >10 matching fragments (bridge), or at least half of
the smaller number of fragments (>5 always). Map contigs with
internally consistent, overlapping fingerprints but with inconsis-
tent sequence alignments (i.e., alignment to two or more se-
quence regions) were excluded from the merging process.

Anchoring the YAC Map to the Rat Sequence Assembly
Sequence coordinates for YAC clones were determined using the
hybridization-associated RPCI-32 BACs that also had sequence
coordinates. To obtain contiguous YAC contig localizations, we
screened the hybridization results to remove associations with
YACs that hybridized to multiple chromosomes. The screened
BAC–YAC relationships were used to annotate each YAC with the
sequence coordinates of the associated BACs. These coordinates
were used to determine the extent of the anchored part of the
YAC, although the actual YAC insert may extend beyond its first/
last BAC coordinate. The coordinates of the individual YACs were
used to anchor the YAC map on the sequence assembly by asso-
ciating the YAC coordinates with their cognate contigs.

Data Availability
The FPC database is available for download from http://
www.bcgsc.ca/lab/mapping/data. The data can also be viewed via
the Internet using iCE (Fjell et al. 2003), a Java-based application
for viewing FPC data (http://www.bcgsc.ca/about/news/ice). The
integrated maps and sequence assembly can be viewed at http://
mkweb.bcgsc.ca/rat/mapview, which includes a link to the FPC
clone map tracks in the UCSC Genome Browser. All YAC map
data are freely available at http://www.mdc-berlin.de/
ratgenome/ or http://www.molgen.mpg.de/∼ratgenome/.
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