35 research outputs found

    Temperature-driven biodiversity change : disentangling space and time

    Get PDF
    CW was supported by the Natural Environmental Research Council (grant no. NE/L002531/1). AEB is supported by the Canada Research Chairs program. MD is grateful for support through Scottish Funding Council's (Marine Alliance for Science and Technology for Scotland grant no. HR09011), the European Research Council grant nos. ­AdG-250189 (BioTIME) and PoC-727440 (BioCHANGE).Temperature regimes have multiple spatial and temporal dimensions that have different impacts on biodiversity. Signatures of warming across these dimensions may contribute uniquely to the large-scale species redistributions and abundance changes that underpin community dynamics. A comprehensive review of the literature reveals that 86% of studies were focused on community responses to temperature aggregated over spatial or temporal dimensions (e.g., mean, median, or extremes). Therefore, the effects of temperature variation in space and time on biodiversity remain generally unquantified. In the present article, we argue that this focus on aggregated temperature measures may limit advancing our understanding of how communities are being altered by climate change. In light of this, we map the cause-and-effect pathways between the different dimensions of temperature change and communities in space and time. A broadened focus, shifted toward a multidimensional perspective of temperature, will allow better interpretation and prediction of biodiversity change and more robust management and conservation strategies.Publisher PDFPeer reviewe

    Insect occurrence in agricultural land‐uses depends on realized niche and geographic range properties

    Get PDF
    Geographic range size predicts species' responses to land-use change and intensification, but the reason why is not well established because many correlates of larger geographic ranges, such as realized niche breadth, may mediate species' responses to environmental change. Agricultural land uses (hereafter 'agroecosystems') have warm, dry and more variable microclimates than do cooler and wetter mature forests, so are predicted to filter for species that have warmer, drier and broader fundamental and realized niches. To test these predictions, we estimated species' realized niches, for temperature and precipitation, and geographic range sizes of 764 insect species by matching GBIF occurrence records to global climate layers, and modelled how species presence/absence in mature forest and nearby agroecosystems depend on species' realized niches or geographic ranges. The predicted species niche effects consistently matched the expected direction of microclimatic transition from mature forest to agroecosystems. We found a clear signal that species with preference for warmer and drier climates were more likely to be present in agroecosystems. In addition, the probability that species occurred in different land-use types was predicted better by species' realized niche than their geographic range size. However, niche effects are often context-dependent and varied amongst studies, taxonomic groups and regions used in this analysis: predicting which particular aspects of species' realized niche cause sensitivity to land-use change, and the underpinning mechanisms, remains a major challenge for future research and multiple components of species' realized niches may be important to consider. Using realized niches derived from open-source occurrence records can be a simple and widely applicable tool to help identify when biodiversity responds to the microclimate component of land-use change.CW and ADP were supported by the Natural Environmental Research Council (grants no. NE/L002531/1 and NE/M014533/1, respectively).info:eu-repo/semantics/publishedVersio

    The geography of biodiversity change in marine and terrestrial assemblages

    Get PDF
    This work was supported by funding to the sChange working group through sDiv, the synthesis center of iDiv, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). S.A.B., H.B., J.M.C., J.H., and M.W. were supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. S.R.S. was supported by U.S. National Science Foundation grant 1400911. LHA was supported by Fundação para a CiĂȘncia e Tecnologia, Portugal (POPH/FSE SFRH/BD/90469/2012), and by the Jane and Aatos Erkko Foundation. M.D. was supported by a Leverhulme Trust Fellowship. A.E.M., F.M., and M.D. were supported by ERC AdG BioTIME 250189 and PoC BioCHANGE 727440. A.G. is supported by the Liber Ero Chair in Biodiversity Conservation.Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.PostprintPostprintPeer reviewe

    Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes

    Get PDF
    Abstract Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land-use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo-Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world.Peer reviewe

    Ecological Assemblages in a Warming Climate: Addressing Knowledge Gaps in the Role of Thermal Heterogeneity and Realised Niches at a Global Scale

    No full text
    Ecological responses to Anthropogenic climate warming are occurring across the globe. The aim of this thesis is to critically examine knowledge gaps in: i) how assemblages respond to multidimensional temperature change; ii) patterns of realised niches across species’ assemblages. I investigate these gaps to build the requisite knowledge to describe and predict assemblage scale responses to climatic warming.Chapter 2 develops a conceptual framework relating the processes of individual movements and population dynamics to the spatial and temporal dimensions of temperature change. I find that most studies do not consider the dimensionality of temperature change when quantifying assemblage dynamics.Chapter 3 finds that, on average, the abundance of reef fish species across their thermal ranges supports the ‘abundant-niche centre’ hypothesis. I also find a systematic pattern in the skew of realised thermal niches amongst species, which relates to latitude and biogeographic habitat variation.Chapter 4 quantifies spatial patterns in the diversity of species’ responses to heatwave events in five functional groups of reef fishes on the Great Barrier Reef and western Coral Sea. Browsing herbivores, scraping herbivores and corallivores have spatially homogenous patterns of response diversity indicating resilience at a regional scale. Further, all functional groups positively respond to temperature warming but only corallivores and excavators negatively respond to coral loss, and no functional groups strongly respond to algae loss.Chapter 5 critically examines the ‘wide-ranged winners’ paradigm for terrestrial ectotherms (insects) across land-use types that represent a microclimatic gradient. I find that species’ niche metrics consistently outperform geographic range size in predicting species occurrence. Species with warmer and drier affinities increased in occupancy in agricultural land uses which matched the expected warmer and dryer conditions.Overall, realised niches are structured by abundance, exhibit diversity within local assemblages and regional species pools, and can predict occupancy at local scales even in thermally heterogeneous terrestrial systems. This thesis therefore further establishes the thermal niche as a core concept to quantify the dynamics of assemblages in a warming world. Chapter 6 critically evaluates the benefits and limitations of this niche perspective for quantifying biodiversity change and suggests future research avenues.<br/

    Insect occurrence in agricultural land-uses depends on realized niche and geographic range properties

    No full text
    Geographic range size predicts species' responses to land-use change and intensification, but the reason why is not well established because many correlates of larger geographic ranges, such as realized niche breadth, may mediate species' responses to environmental change. Agricultural land uses (hereafter 'agroecosystems') have warm, dry and more variable microclimates than do cooler and wetter mature forests, so are predicted to filter for species that have warmer, drier and broader fundamental and realized niches. To test these predictions, we estimated species' realized niches, for temperature and precipitation, and geographic range sizes of 764 insect species by matching GBIF occurrence records to global climate layers, and modelled how species presence/absence in mature forest and nearby agroecosystems depend on species' realized niches or geographic ranges. The predicted species niche effects consistently matched the expected direction of microclimatic transition from mature forest to agroecosystems. We found a clear signal that species with preference for warmer and drier climates were more likely to be present in agroecosystems. In addition, the probability that species occurred in different land-use types was predicted better by species' realized niche than their geographic range size. However, niche effects are often context-dependent and varied amongst studies, taxonomic groups and regions used in this analysis: predicting which particular aspects of species' realized niche cause sensitivity to land-use change, and the underpinning mechanisms, remains a major challenge for future research and multiple components of species' realized niches may be important to consider. Using realized niches derived from open-source occurrence records can be a simple and widely applicable tool to help identify when biodiversity responds to the microclimate component of land-use change.ISSN:0906-7590ISSN:1600-058
    corecore