7,875 research outputs found
Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes
We propose additional conditions (beyond those considered in our previous
papers) that should be imposed on Wick products and time-ordered products of a
free quantum scalar field in curved spacetime. These conditions arise from a
simple ``Principle of Perturbative Agreement'': For interaction Lagrangians
that are such that the interacting field theory can be constructed
exactly--as occurs when is a ``pure divergence'' or when is at most
quadratic in the field and contains no more than two derivatives--then
time-ordered products must be defined so that the perturbative solution for
interacting fields obtained from the Bogoliubov formula agrees with the exact
solution. The conditions derived from this principle include a version of the
Leibniz rule (or ``action Ward identity'') and a condition on time-ordered
products that contain a factor of the free field or the free
stress-energy tensor . The main results of our paper are (1) a proof
that in spacetime dimensions greater than 2, our new conditions can be
consistently imposed in addition to our previously considered conditions and
(2) a proof that, if they are imposed, then for {\em any} polynomial
interaction Lagrangian (with no restriction on the number of derivatives
appearing in ), the stress-energy tensor of the interacting
theory will be conserved. Our work thereby establishes (in the context of
perturbation theory) the conservation of stress-energy for an arbitrary
interacting scalar field in curved spacetimes of dimension greater than 2. Our
approach requires us to view time-ordered products as maps taking classical
field expressions into the quantum field algebra rather than as maps taking
Wick polynomials of the quantum field into the quantum field algebra.Comment: 88 pages, latex, no figures, v2: changes in the proof of proposition
3.
Wald's entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling
The Bekenstein-Hawking entropy of black holes in Einstein's theory of gravity
is equal to a quarter of the horizon area in units of Newton's constant. Wald
has proposed that in general theories of gravity the entropy of stationary
black holes with bifurcate Killing horizons is a Noether charge which is in
general different from the Bekenstein-Hawking entropy. We show that the Noether
charge entropy is equal to a quarter of the horizon area in units of the
effective gravitational coupling on the horizon defined by the coefficient of
the kinetic term of specific graviton polarizations on the horizon. We present
several explicit examples of static spherically symmetric black holes.Comment: 20 pages ; added clarifications, explanations, new section on the
choice of polarizations, results unchanged; replaced with published versio
Hamiltonian of galileon field theory
We give a detailed calculation for the Hamiltonian of single galileon field
theory, keeping track of all the surface terms. We calculate the energy of
static, spherically symmetric configuration of the single galileon field at
cubic order coupled to a point-source and show that the 2-branches of the
solution possess energy of equal magnitude and opposite sign, the sign of which
is determined by the coefficient of the kinetic term . Moreover the
energy is regularized in the short distance (ultra-violet) regime by the
dominant cubic term even though the source is divergent at the origin. We argue
that the origin of the negativity is due to the ghost-like modes in the
corresponding branch in the presence of the point source. This seems to be a
non-linear manifestation of the ghost instability.Comment: 13 pages, 1 figur
Quantum field theory in curved spacetime, the operator product expansion, and dark energy
To make sense of quantum field theory in an arbitrary (globally hyperbolic)
curved spacetime, the theory must be formulated in a local and covariant manner
in terms of locally measureable field observables. Since a generic curved
spacetime does not possess symmetries or a unique notion of a vacuum state, the
theory also must be formulated in a manner that does not require symmetries or
a preferred notion of a ``vacuum state'' and ``particles''. We propose such a
formulation of quantum field theory, wherein the operator product expansion
(OPE) of the quantum fields is elevated to a fundamental status, and the
quantum field theory is viewed as being defined by its OPE. Since the OPE
coefficients may be better behaved than any quantities having to do with
states, we suggest that it may be possible to perturbatively construct the OPE
coefficients--and, thus, the quantum field theory. By contrast, ground/vacuum
states--in spacetimes, such as Minkowski spacetime, where they may be
defined--cannot vary analytically with the parameters of the theory. We argue
that this implies that composite fields may acquire nonvanishing vacuum state
expectation values due to nonperturbative effects. We speculate that this could
account for the existence of a nonvanishing vacuum expectation value of the
stress-energy tensor of a quantum field occurring at a scale much smaller than
the natural scales of the theory.Comment: 9 pages, essay awarded 4th prize by Gravity Research Foundatio
Physical process version of the first law of thermodynamics for black holes in Einstein-Maxwell axion-dilaton gravity
We derive general formulae for the first order variation of the ADM mass,
angular momentum for linear perturbations of a stationary background in
Einstein-Maxwell axion-dilaton gravity being the low-energy limit of the
heterotic string theory. All these variations were expressed in terms of the
perturbed matter energy momentum tensor and the perturbed charge current
density. Combining these expressions we reached to the form of the {\it
physical version} of the first law of black hole dynamics for the stationary
black holes in the considered theory being the strong support for the cosmic
censorship.Comment: 8 pages, Revte
On Cosmological Implication of the Trace Anomaly
We establish a connection between the trace anomaly and a thermal radiation
in the context of the standard cosmology. This is done by solving the covariant
conservation equation of the stress tensor associated with a conformally
invariant quantum scalar field. The solution corresponds to a thermal radiation
with a temperature which is given in terms of a cut-off time excluding the
spacetime regions very close to the initial singularity. We discuss the
interrelation between this result and the result obtained in a two-dimensional
schwarzschild spacetime.Comment: 8 pages, no figure
New thought experiment to test the generalized second law of thermodynamics
We propose an extension of the original thought experiment proposed by
Geroch, which sparked much of the actual debate and interest on black hole
thermodynamics, and show that the generalized second law of thermodynamics is
in compliance with it.Comment: 4 pages (revtex), 3 figure
On leading order gravitational backreactions in de Sitter spacetime
Backreactions are considered in a de Sitter spacetime whose cosmological
constant is generated by the potential of scalar field. The leading order
gravitational effect of nonlinear matter fluctuations is analyzed and it is
found that the initial value problem for the perturbed Einstein equations
possesses linearization instabilities. We show that these linearization
instabilities can be avoided by assuming strict de Sitter invariance of the
quantum states of the linearized fluctuations. We furthermore show that quantum
anomalies do not block the invariance requirement. This invariance constraint
applies to the entire spectrum of states, from the vacuum to the excited states
(should they exist), and is in that sense much stronger than the usual Poincare
invariance requirement of the Minkowski vacuum alone. Thus to leading order in
their effect on the gravitational field, the quantum states of the matter and
metric fluctuations must be de Sitter invariant.Comment: 12 pages, no figures, typos corrected and some clarifying comments
added, version accepted by Phys. Rev.
- …
