We propose additional conditions (beyond those considered in our previous
papers) that should be imposed on Wick products and time-ordered products of a
free quantum scalar field in curved spacetime. These conditions arise from a
simple ``Principle of Perturbative Agreement'': For interaction Lagrangians
L1 that are such that the interacting field theory can be constructed
exactly--as occurs when L1 is a ``pure divergence'' or when L1 is at most
quadratic in the field and contains no more than two derivatives--then
time-ordered products must be defined so that the perturbative solution for
interacting fields obtained from the Bogoliubov formula agrees with the exact
solution. The conditions derived from this principle include a version of the
Leibniz rule (or ``action Ward identity'') and a condition on time-ordered
products that contain a factor of the free field ϕ or the free
stress-energy tensor Tab. The main results of our paper are (1) a proof
that in spacetime dimensions greater than 2, our new conditions can be
consistently imposed in addition to our previously considered conditions and
(2) a proof that, if they are imposed, then for {\em any} polynomial
interaction Lagrangian L1 (with no restriction on the number of derivatives
appearing in L1), the stress-energy tensor Θab of the interacting
theory will be conserved. Our work thereby establishes (in the context of
perturbation theory) the conservation of stress-energy for an arbitrary
interacting scalar field in curved spacetimes of dimension greater than 2. Our
approach requires us to view time-ordered products as maps taking classical
field expressions into the quantum field algebra rather than as maps taking
Wick polynomials of the quantum field into the quantum field algebra.Comment: 88 pages, latex, no figures, v2: changes in the proof of proposition
3.