Backreactions are considered in a de Sitter spacetime whose cosmological
constant is generated by the potential of scalar field. The leading order
gravitational effect of nonlinear matter fluctuations is analyzed and it is
found that the initial value problem for the perturbed Einstein equations
possesses linearization instabilities. We show that these linearization
instabilities can be avoided by assuming strict de Sitter invariance of the
quantum states of the linearized fluctuations. We furthermore show that quantum
anomalies do not block the invariance requirement. This invariance constraint
applies to the entire spectrum of states, from the vacuum to the excited states
(should they exist), and is in that sense much stronger than the usual Poincare
invariance requirement of the Minkowski vacuum alone. Thus to leading order in
their effect on the gravitational field, the quantum states of the matter and
metric fluctuations must be de Sitter invariant.Comment: 12 pages, no figures, typos corrected and some clarifying comments
added, version accepted by Phys. Rev.