research

Wald's entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling

Abstract

The Bekenstein-Hawking entropy of black holes in Einstein's theory of gravity is equal to a quarter of the horizon area in units of Newton's constant. Wald has proposed that in general theories of gravity the entropy of stationary black holes with bifurcate Killing horizons is a Noether charge which is in general different from the Bekenstein-Hawking entropy. We show that the Noether charge entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling on the horizon defined by the coefficient of the kinetic term of specific graviton polarizations on the horizon. We present several explicit examples of static spherically symmetric black holes.Comment: 20 pages ; added clarifications, explanations, new section on the choice of polarizations, results unchanged; replaced with published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020