241 research outputs found

    Characterization of in vivo vertebral growth modulation by shape memory alloy staples on a porcine model for the correction of the scoliosis

    Full text link
    La recherche de nouvelles voies de correction de la scoliose idiopathique a une longue histoire. Le traitement conventionnel de la scoliose idiopathique est prĂ©sentĂ© par le port du corset ou par la correction opĂ©ratoire de la dĂ©formation. Depuis leur introduction, les deux mĂ©thodes ont prouvĂ© leur efficacitĂ©. Cependant, malgrĂ© des caractĂ©ristiques positives Ă©videntes, ces mĂ©thodes peuvent causer un nombre important d'effets indĂ©sirables sur la santĂ© du patient. Les techniques sans fusion pour le traitement de la scoliose semblent ĂȘtre une alternative perspective de traitement traditionnel, car ils apportent moins de risques et des complications chirurgicales que les mĂ©thodes conventionnelles avec la conservation de la mobilitĂ© du disque intravertĂ©bral. Cependant, l'utilisation de techniques mentionnĂ©es exige une connaissance profonde de la modulation de croissance vertĂ©brale. L'objectif principal de la prĂ©sente Ă©tude est d'estimer le potentiel d'agrafes Ă  l’AMF de moduler la croissance des vertĂšbres porcines en mesurant la croissance osseuse sur la plaque de croissance de vertĂšbres instrumentĂ©es en comparaison avec le groupe contrĂŽle. La mĂ©thode est basĂ©e sur la loi de Hueter-Volkmann. Nous avons choisi NiTi agrafes Ă  l’AMF pour notre Ă©tude et les porcs de race Landrace comme un animal expĂ©rimental. Les agrafes ont Ă©tĂ© insĂ©rĂ©s sur 5 niveaux thoracique de T6 Ă  T11. En outre, les radiographies ont Ă©tĂ© prises toutes les 2 semaines. La prĂ©sence d'agrafes en alliage Ă  mĂ©moire de forme a produit la crĂ©ation de courbes scoliotiques significatives dans 4 de 6 animaux chargĂ©s et le ralentissement considĂ©rable de la croissance osseuse (jusqu'Ă  35,4%) comparativement aux groupes contrĂŽle et sham. L'Ă©tude a dĂ©montrĂ© in vivo le potentiel d'agrafes en alliage Ă  mĂ©moire de formes de moduler la croissance des vertĂšbres en crĂ©ant des courbes scoliotiques sur les radiographies et en ralentissant le taux de croissance sur les plaques de croissance instrumentĂ©. La position prĂ©cise de l'agrafe est essentielle pour la modulation de croissance osseuse et le dĂ©veloppement de la scoliose expĂ©rimentale.The search for a new ways of correction of idiopathic scoliosis was started long ago. Conventional treatments of idiopathic scoliosis comprise predominantly bracing and open correction of the deformity. Since their introduction, both methods have proven effective. However, despite evident positive characteristics, these methods can pose a significant number of undesirable effects to patient health.. There for fusionless techniques for the treatment of scoliosis seems to be a perspective alternative of traditional treatment as it presents less surgical risks and complications then conventional methods including maintenance of disc mobility. However the use of mentioned techniques demands a deep knowledge of vertebral growth modulation. The principal objective of present study is to estimate the potential of SMA staples to modulate the growth of porcine vertebrae by measuring bone growth on the growth plate of instrumented vertebrae in comparison with the control group. The method is based on the Hueter-Volkmann law. We choose NiTi SMA staples for our study and Landrace domestic pigs as an experimental animal. The staples were inserted on 5 thoracic levels from T6 to T11. Additionally, radiographs were taken every 2 weeks. The presence of shape memory alloy staples led to creation of significant scoliosis curves in 4 of 6 loaded animals and considerable slowing of bone growth (up to 35.4.%) comparatively to control and sham groups. The study has demonstrated in vivo the potential of the shape memory alloy staples to modulate the growth of vertebrae by creating scoliotic curves on radiographs and by slowing the growth rate on the instrumented growth plates. Accurate position of the staple is essential for the bone growth modulation and the development of experimental scoliosis

    Wnt11/Fzd7 signaling compartmentalizes AKAP2/PKA to regulate L-type Ca2+ channel

    Get PDF
    Calcium influx through the voltage-gated L-type calcium channels (LTCC) mediates a wide range of physiological processes from contraction to secretion. Despite extensive research on regulation of LTCC conductance by PKA phosphorylation in response to ÎČ-adrenergic stimulation, the science remains incomplete. Here, we show that Wnt11, a non-canonical Wnt ligand, through its G protein-coupled receptor (GPCR) Fzd7 attenuates the LTCC conductance by preventing the proteolytic processing of its C terminus. This is mediated across species by protein kinase A (PKA), which is compartmentalized by A-kinase anchoring proteins (AKAP). Systematic analysis of all AKAP family members revealed AKAP2 anchoring of PKA is central to the Wnt11-dependent regulation of the channel. The identified Wnt11/AKAP2/PKA signalosome is required for heart development, controlling the intercellular electrical coupling in the developing zebrafish heart. Altogether, our data revealed Wnt11/Fzd7 signaling via AKAP2/PKA as a conserved alternative GPCR system regulating Ca(2+) homeostasis

    Right‐ventricular dysfunction in HFpEF is linked to altered cardiomyocyte Ca2+ homeostasis and myofilament sensitivity

    Get PDF
    Aim Heart failure with preserved ejection fraction (HFpEF) is frequently (30%) associated with right ventricular (RV) dysfunction, which increases morbidity and mortality in these patients. Yet cellular mechanisms of RV remodelling and RV dysfunction in HFpEF are not well understood. Here, we evaluated RV cardiomyocyte function in a rat model of metabolically induced HFpEF. Methods: and results Heart failure with preserved ejection fraction-prone animals (ZSF-1 obese) and control rats (Wistar Kyoto) were fed a high-caloric diet for 13 weeks. Haemodynamic characterization by echocardiography and invasive catheterization was performed at 22 and 23 weeks of age, respectively. After sacrifice, organ morphometry, RV histology, isolated RV cardiomyocyte function, and calcium (Ca2+) transients were assessed. ZSF-1 obese rats showed a HFpEF phenotype with left ventricular (LV) hypertrophy, LV diastolic dysfunction (including increased LV end-diastolic pressures and E/e ' ratio), and preserved LV ejection fraction. ZSF-1 obese animals developed RV dilatation (50% increased end-diastolic area) and mildly impaired RV ejection fraction (42%) with evidence of RV hypertrophy. In isolated RV cardiomyocytes from ZSF-1 obese rats, cell shortening amplitude was preserved, but cytosolic Ca2+ transient amplitude was reduced. In addition, augmentation of cytosolic Ca2+ release with increased stimulation frequency was lost in ZSF-1 obese rats. Myofilament sensitivity was increased, while contractile kinetics were largely unaffected in intact isolated RV cardiomyocytes from ZSF-1 obese rats. Western blot analysis revealed significantly increased phosphorylation of cardiac myosin-binding protein C (Ser282 cMyBP-C) but no change in phosphorylation of troponin I (Ser23, 24 TnI) in RV myocardium from ZSF-1 obese rats. Conclusions: Right ventricular dysfunction in obese ZSF-1 rats with HFpEF is associated with intrinsic RV cardiomyocyte remodelling including reduced cytosolic Ca2+ amplitudes, loss of frequency-dependent augmentation of Ca2+ release, and increased myofilament Ca2+ sensitivity

    Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction

    Get PDF
    Aims: Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). Methods and results: Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca-2(+) reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca-2(+) release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+-wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. Conclusions: In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity

    Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF

    Get PDF
    Background: Sodium-glucose linked transporter type 2 (SGLT-2) inhibition has been shown to reduce cardiovascular mortality in heart failure independently of glycemic control and prevents the onset of atrial arrhythmias, a common co-morbidity in heart failure with preserved ejection fraction (HFpEF). The mechanism behind these effects is not fully understood, and it remains unclear if they could be further enhanced by additional SGLT-1 inhibition. We investigated the effects of chronic treatment with the dual SGLT-1&2 inhibitor sotagliflozin on left atrial (LA) remodeling and cellular arrhythmogenesis (i.e. atrial cardiomyopathy) in a metabolic syndrome-related rat model of HFpEF. Methods: 17 week-old ZSF-1 obese rats, a metabolic syndrome-related model of HFpEF, and wild type rats (Wistar Kyoto), were fed 30 mg/kg/d sotagliflozin for 6 weeks. At 23 weeks, LA were imaged in-vivo by echocardiography. In-vitro, Ca2+ transients (CaT; electrically stimulated, caffeine-induced) and spontaneous Ca2+ release were recorded by ratiometric microscopy using Ca2+-sensitive fluorescent dyes (Fura-2) during various experimental protocols. Mitochondrial structure (dye: Mitotracker), Ca2+ buffer capacity (dye: Rhod-2), mitochondrial depolarization (dye: TMRE) and production of reactive oxygen species (dye: H2DCF) were visualized by confocal microscopy. Statistical analysis was performed with 2-way analysis of variance followed by post-hoc Bonferroni and student's t-test, as applicable. Results: Sotagliflozin ameliorated LA enlargement in HFpEF in-vivo. In-vitro, LA cardiomyocytes in HFpEF showed an increased incidence and amplitude of arrhythmic spontaneous Ca2+ release events (SCaEs). Sotagliflozin significantly reduced the magnitude of SCaEs, while their frequency was unaffected. Sotagliflozin lowered diastolic [Ca2+] of CaT at baseline and in response to glucose influx, possibly related to a similar to 50% increase of sodium sodium-calcium exchanger (NCX) forward-mode activity. Sotagliflozin prevented mitochondrial swelling and enhanced mitochondrial Ca2+ buffer capacity in HFpEF. Sotagliflozin improved mitochondrial fission and reactive oxygen species (ROS) production during glucose starvation and averted Ca2+ accumulation upon glycolytic inhibition. Conclusion: The SGLT-1&2 inhibitor sotagliflozin ameliorated LA remodeling in metabolic HFpEF. It also improved distinct features of Ca2+-mediated cellular arrhythmogenesis in-vitro (i.e. magnitude of SCaEs, mitochondrial Ca2+ buffer capacity, diastolic Ca2+ accumulation, NCX activity). The safety and efficacy of combined SGLT-1&2 inhibition for the treatment and/or prevention of atrial cardiomyopathy associated arrhythmias should be further evaluated in clinical trials

    The RNA-binding landscape of HAX1 protein indicates its involvement in translation and ribosome assembly

    Get PDF
    HAX1 is a human protein with no known homologues or structural domains. Mutations in the HAX1 gene cause severe congenital neutropenia through mechanisms that are poorly understood. Previous studies reported the RNA-binding capacity of HAX1, but the role of this binding in physiology and pathology remains unexplained. Here, we report the transcriptome-wide characterization of HAX1 RNA targets using RIP-seq and CRAC, indicating that HAX1 binds transcripts involved in translation, ribosome biogenesis, and rRNA processing. Using CRISPR knockouts, we find that HAX1 RNA targets partially overlap with transcripts downregulated in HAX1 KO, implying a role in mRNA stabilization. Gene ontology analysis demonstrated that genes differentially expressed in HAX1 KO (including genes involved in ribosome biogenesis and translation) are also enriched in a subset of genes whose expression correlates with HAX1 expression in four analyzed neoplasms. The functional connection to ribosome biogenesis was also demonstrated by gradient sedimentation ribosome profiles, which revealed differences in the small subunit:monosome ratio in HAX1 WT/KO. We speculate that changes in HAX1 expression may be important for the etiology of HAX1-linked diseases through dysregulation of translation

    An intriguing shift occurs in the novel protein phosphatase 1 binding partner, TCTEX1D4: evidence of positive selection in a pika model

    Get PDF
    T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) contains the canonical phosphoprotein phosphatase 1 (PPP1) binding motif, composed by the amino acid sequence RVSF. We identified and validated the binding of TCTEX1D4 to PPP1 and demonstrated that indeed this protein is a novel PPP1 interacting protein. Analyses of twenty-one mammalian species available in public databases and seven Lagomorpha sequences obtained in this work showed that the PPP1 binding motif 90RVSF93 is present in all of them and is flanked by a palindromic sequence, PLGS, except in three species of pikas (Ochotona princeps, O. dauurica and O. pusilla). Furthermore, for the Ochotona species an extra glycosylation site, motif 96NLS98, and the loss of the palindromic sequence were observed. Comparison with other lagomorphs suggests that this event happened before the Ochotona radiation. The dN/dS for the sequence region comprising the PPP1 binding motif and the flanking palindrome highly supports the hypothesis that for Ochotona species this region has been evolving under positive selection. In addition, mutational screening shows that the ability of pikas TCTEX1D4 to bind to PPP1 is maintained, although the PPP1 binding motif is disrupted, and the N- and C-terminal surrounding residues are also abrogated. These observations suggest pika as an ideal model to study novel PPP1 complexes regulatory mechanisms.publishe

    Protein Phosphatase-1α Interacts with and Dephosphorylates Polycystin-1

    Get PDF
    Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme

    Drosophila Uri, a PP1α binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1α and PP1ÎČ subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1ÎČ.</p> <p>Results</p> <p>URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that <it>Drosophila </it>Uri binds PP1α with much higher affinity than PP1ÎČ, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a <it>uri </it>loss of function allele, and show that <it>uri </it>is essential for viability in <it>Drosophila</it>. <it>uri </it>mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei.</p> <p>Conclusion</p> <p>Uri is the first PP1α specific binding protein to be described in <it>Drosophila</it>. Uri protein plays a role in transcriptional regulation. Activity of <it>uri </it>is required to maintain DNA integrity and cell survival in normal development.</p
    • 

    corecore