415 research outputs found

    Planar Rayleigh scattering results in helium-air mixing experiments in a Mach-6 wind tunnel

    Get PDF
    Planar Rayleigh scattering measurements with an argon—fluoride excimer laser are performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach-6 facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross-sectional area (5 cm × 10 cm) of the flow field in the absence of clusters

    Reduction of turbomachinery noise

    Get PDF
    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine

    Interatomic-Coulombic-decay-induced recapture of photoelectrons in helium dimers

    Full text link
    We investigate the onset of photoionization shakeup induced interatomic Coulombic decay (ICD) in He2 at the He+*(n = 2) threshold by detecting two He+ ions in coincidence. We find this threshold to be shifted towards higher energies compared to the same threshold in the monomer. The shifted onset of ion pairs created by ICD is attributed to a recapture of the threshold photoelectron after the emission of the faster ICD electron.Comment: 5 Pages, 2 Figure

    Vibrationally Resolved Decay Width of Interatomic Coulombic Decay in HeNe

    Full text link
    We investigate the ionization of HeNe from below the He 1s3p excitation to the He ionization threshold. We observe HeNe+^+ ions with an enhancement by more than a factor of 60 when the He side couples resonantly to the radiation field. These ions are an experimental proof of a two-center resonant photoionization mechanism predicted by Najjari et al. [Phys. Rev. Lett. 105, 153002 (2010)]. Furthermore, our data provide electronic and vibrational state resolved decay widths of interatomic Coulombic decay (ICD) in HeNe dimers. We find that the ICD lifetime strongly increases with increasing vibrational state.Comment: 7 pages, 5 figure

    A measurement of the evolution of Interatomic Coulombic Decay in the time domain

    Full text link
    During the last 15 years a novel decay mechanism of excited atoms has been discovered and investigated. This so called ''Interatomic Coulombic Decay'' (ICD) involves the chemical environment of the electronically excited atom: the excitation energy is transferred (in many cases over long distances) to a neighbor of the initially excited particle usually ionizing that neighbor. It turned out that ICD is a very common decay route in nature as it occurs across van-der-Waals and hydrogen bonds. The time evolution of ICD is predicted to be highly complex, as its efficiency strongly depends on the distance of the atoms involved and this distance typically changes during the decay. Here we present the first direct measurement of the temporal evolution of ICD using a novel experimental approach.Comment: 6 pages, 4 figures, submitted to PR

    The Impact of Climate Policy on U.S. Aviation

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We evaluate the impact of an economy-wide cap-and-trade policy on U.S. aviation taking the American Clean Energy and Security Act of 2009 (H.R.2454) as a representative example. We use an economywide model to estimate the impact of H.R. 2454 on fuel prices and economic activity, and a partial equilibrium model of the aviation industry to estimate changes in aviation carbon dioxide (CO2) emissions and operations. Between 2012 and 2050, with reference demand growth benchmarked to ICAO/GIACC (2009) forecasts, we find that aviation emissions increase by 130%. In our climate policy scenarios, emissions increase by between 97% and 122%. A key finding is that, under the core set of assumptions in our analysis, H.R. 2454 reduces average fleet efficiency, as increased air fares reduce demand and slow the introduction of new aircraft. Assumptions relating to the sensitivity of aviation demand to price changes, and the degree to which higher fuel prices stimulate advances in the fuel efficiency of new aircraft play an important role in this result.U.S. Federal Aviation Administration Office of Environment and Energy under FAA Award Number: 06HCHNEHMIT, Amendment Nos. 018 and 028. ErichHBecker Foundation. The Joint Program on the Science and Policy of Global Change is funded by the U.S. Department of Energy and a consortium of government and industrial sponsors

    Two-particle interference of electron pairs on a molecular level

    Full text link
    We investigate the photo-doubleionization of H2H_2 molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast, the quasi-particle consisting of both electrons (i.e. the "dielectron") does. The work highlights the fact that non-local effects are embedded everywhere in nature where many-particle processes are involved

    Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles

    Full text link
    The reverse martensitic ("austenitic") transformation upon heating of equiatomic nickel-titanium nanoparticles with diameters between 4 and 17 nm is analyzed by means of molecular-dynamics simulations with a semi-empirical model potential. After constructing an appropriate order parameter to distinguish locally between the monoclinic B19' at low and the cubic B2 structure at high temperatures, the process of the phase transition is visualized. This shows a heterogeneous nucleation of austenite at the surface of the particles, which propagates to the interior by plane sliding, explaining a difference in austenite start and end temperatures. Their absolute values and dependence on particle diameter are obtained and related to calculations of the surface induced size dependence of the difference in free energy between austenite and martensite.Comment: 6 pages, 4 figures, accepted for publication in "The European Physical Journal B

    Ion impact induced Interatomic Coulombic Decay in neon and argon dimers

    Full text link
    We investigate the contribution of Interatomic Coulombic Decay induced by ion impact in neon and argon dimers (Ne2_2 and Ar2_2) to the production of low energy electrons. Our experiments cover a broad range of perturbation strengths and reaction channels. We use 11.37 MeV/u S14+^{14+}, 0.125 MeV/u He1+^{1+}, 0.1625 MeV/u He1+^{1+} and 0.150 MeV/u He2+^{2+} as projectiles and study ionization, single and double electron transfer to the projectile as well as projectile electron loss processes. The application of a COLTRIMS reaction microscope enables us to retrieve the three-dimensional momentum vectors of the ion pairs of the fragmenting dimer into Neq+^{q+}/Ne1+^{1+} and Arq+^{q+}/Ar1+^{1+} (q = 1, 2, 3) in coincidence with at least one emitted electron
    • …
    corecore