22 research outputs found

    Interferon-γ-induced Regulation of Peroxisome Proliferator-activated Receptor γ and STATs in Adipocytes

    Get PDF
    Interferon-γ (IFN-γ) is known primarily for its roles in immunological responses but also has been shown to affect fat metabolism and adipocyte gene expression. To further investigate the effects of IFN-γ on fat cells, we examined the effects of this cytokine on the expression of adipocyte transcription factors in 3T3-L1 adipocytes. Although IFN-γ regulated the expression of several adipocyte transcription factors, IFN-γ treatment resulted in a rapid reduction of both peroxisome proliferator-activated receptor (PPAR) protein and mRNA. A 48-h exposure to IFN-γ also resulted in a decrease of both CCAAT/enhancer-binding α and sterol regulatory element binding protein (SREBP-1) expression. The short half-life of both the PPARγ mRNA and protein likely contributed to the rapid decline of both cytosolic and nuclear PPARγ in the presence of IFN-γ. Our studies clearly demonstrated that the IFN-γ-induced loss of PPARγ protein is partially inhibited in the presence of two distinct proteasome inhibitors. Moreover, IFN-γ also inhibited the transcription of PPARγ, which was accompanied by a decrease in PPARγ mRNA accumulation. In addition, exposure to IFN-γ resulted in a substantial increase in STAT I expression and a small increase in STAT 3 expression. IFN-γ treatment of 3T3-L1 adipocytes (48-96 h) resulted in a substantial inhibition of insulin-sensitive glucose uptake. These data clearly demonstrate that IFN-γ treatment results in the development of insulin resistance, which is accompanied by the regulation of various adipocyte transcription factors, in particular the synthesis and degradation of PPARγ

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Dairy Farm Business Summary, Western and Central Plain Region, 2006

    Full text link
    E.B. 2007-06Dairy farm managers throughout New York State have been participating in Cornell Cooperative Extension's farm business summary and analysis program since the early 1950's. Managers of each participating farm business receive a comprehensive summary and analysis of their farm business. The information in this report represents averages of the data submitted from dairy farms in the Western and Central Plain Region for 2006. Program Objective The primary objective of the dairy farm business summary, DFBS, is to help farm managers improve the business and financial management of their business through appropriate use of historical data and the application of modern farm business analysis techniques. This information can also be used to establish goals that enable the business to better fulfill its mission. In short, DFBS provides business and financial information needed in identifying and evaluating strengths and weaknesses of the farm business. Format Features This regional report follows the same general format as the 2006 DFBS individual farm report received by participating dairy farmers. The analysis tables have an open column or section labeled My Farm. It may be used by any dairy farm manager who wants to compare his or her business with the average data of this region. The individual farm data, the regional averages and other data can then be used to establish goals for the business. Non-DFBS participants can download a DFBS Data Check-In Form at http://dfbs.cornell.edu. After collecting the data on the form, it can be entered in the U. S. Top Dairies business summary program at the same web site to obtain a summary of their business

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore