481 research outputs found

    Design for manufacturing and manufacturing capability creation

    Get PDF
    Abstract. Design for manufacturing is important factor in product development when considering time and cost saving solutions. Through that also manufacturing requirement are taken into consideration in early stages of NPD process. Manufacturing capability creation process is to prepare manufacturing to be able to manufacture new products. The aim of this thesis is to combinate these and create an improved product development process and product development internal ramp-up process in case company. Approach to this research is to use literature review part and compare it to case company current state analysis. Current state analysis is made through qualitative interview process in case company, by using public and company documentation and participatory observations. Literature review and empirical part are compared. Result is a proposal of a new product development model which uses the combination of design for manufacturing and manufacturing capability creation tools

    Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets

    Get PDF
    Using particle-in-cell simulations, we demonstrate an improvement of the target normal sheath acceleration (TNSA) of protons in non-periodically nanostructured targets with micron-scale thickness. Compared to standard flat foils, an increase in the proton cutoff energy by up to a factor of two is observed in foils coated with nanocones or perforated with nanoholes. The latter nano-perforated foils yield the highest enhancement, which we show to be robust over a broad range of foil thicknesses and hole diameters. The improvement of TNSA performance results from more efficient hot-electron generation, caused by a more complex laser-electron interaction geometry and increased effective interaction area and duration. We show that TNSA is optimized for a nanohole distribution of relatively low areal density and that is not required to be periodic, thus relaxing the manufacturing constraints.Comment: 11 pages, 8 figure

    On Weighted Graph Separation Problems and Flow-Augmentation

    Get PDF
    One of the first application of the recently introduced technique of\emph{flow-augmentation} [Kim et al., STOC 2022] is a fixed-parameter algorithmfor the weighted version of \textsc{Directed Feedback Vertex Set}, a landmarkproblem in parameterized complexity. In this note we explore applicability offlow-augmentation to other weighted graph separation problems parameterized bythe size of the cutset. We show the following. -- In weighted undirected graphs\textsc{Multicut} is FPT, both in the edge- and vertex-deletion version. -- Theweighted version of \textsc{Group Feedback Vertex Set} is FPT, even with anoracle access to group operations. -- The weighted version of \textsc{DirectedSubset Feedback Vertex Set} is FPT. Our study reveals \textsc{DirectedSymmetric Multicut} as the next important graph separation problem whoseparameterized complexity remains unknown, even in the unweighted setting.<br

    The levels of trypsinogen isoenzymes in ovarian tumour cyst fluids are associated with promatrix metalloproteinase-9 but not promatrix metalloproteinase-2 activation

    Get PDF
    Proteolysis mediated by matrix metalloproteinases (MMPs) and serine proteinases is associated with cancer invasion and metastasis. Activation of latent proMMPs, and especially the proforms of the type IV collagen degrading gelatinases A and B (proMMP-2 and proMMP-9), is thought to be a critical step in this process. We have recently found that human tumour-associated trypsin-2 is a potent activator of proMMP-9 and it also activates proMMP-2 in vitro. Trypsinogen, MMP-2, and MMP-9 are expressed in ovarian cancer. To elucidate the function of trypsin in vivo, we studied whether high concentrations of trypsinogen-1, trypsinogen-2, their α1-proteinase inhibitor (API) complexes, and tumour-associated trypsin inhibitor (TATI) are associated with proMMP-2 and proMMP-9 activation in ovarian tumour cyst fluids. Zymography and immunofluorometric analysis of 61 cyst fluids showed a significant association between high trypsin concentrations and the activation of MMP-9 (P= 0.003–0.05). In contrast, the trypsin concentrations were inversely associated with the activation of MMP-2 (P= 0.01–0.02). Immunohistochemical analysis of ovarian tumour tissue demonstrated expression of trypsinogen-2 and TATI in the secretory epithelium. MMP-2 was detected both in stromal and epithelial cells whereas MMP-9 was detected in neutrophils and macrophage-like cells in stromal and epithelial areas. These results suggest that trypsin may play a role in the regulation of the MMP-dependent proteolysis associated with invasion and metastasis of ovarian cancer. © 2001 Cancer Research Campaign www.bjcancer.co

    Clustered Single Cellulosic Fiber Dissolution Kinetics and Mechanisms through Optical Microscopy under Limited Dissolving Conditions

    Get PDF
    Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in Image) to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, SO, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.Peer reviewe

    Time-resolved x-ray spectroscopy of optical-field-ionized plasmas

    Get PDF
    The time-dependent soft X-ray emission of helium and nitrogen plasmas generated by optical-field ionization is reported. The experiments were carried out by focusing pulses of the high-power Ti:sapphire laser of the Lund Institute of Technology (lambda = 796 nm, pulse duration 150 fs, pulse energy 150 mJ) to a 50-mu m diameter spot close to a nozzle, using He and N-2 as target gases. The emission on He+, N4+, and N3+ resonance lines was recorded by means of a flat-field grating spectrometer coupled to an X-ray streak camera. A pronounced difference in the temporal shape of the emission of the Lyman-alpha line of hydrogen-like helium and of the 2p-3d resonance lines of lithium-like and beryllium-like nitrogen was observed. The helium line exhibited an initial spike followed by a slow revival of the emission, whereas the nitrogen lines showed a slow decay after a fast initial rise. These observations are explained with the help of simulations

    High-order Harmonic-generation In Rare-gases With An Intense Short-pulse Laser

    Get PDF
    We present experimental studies of high-order harmonic generation in the rare gases performed with a short-pulse titanium sapphire laser operating at 794 nm in the 10(14)-10(15) W/cm2 range. The harmonic yields generated in neon and in argon are studied for all orders as a function of the laser intensity. They vary first rather steeply, in the cutoff region, then much more slowly in the plateau region, and, finally, they saturate when the medium gets ionized. The dependence of the high-order harmonic cutoff with the laser intensity in neon and argon is found to be lower than that predicted in single-atom theories. We observe high-order harmonics in argon and xenon (up to the 65th and 45th, respectively) at 10(15) W/cm2, which we attribute to harmonic generation from ions. We also show how the harmonic and fundamental spectra get blueshifted when the medium becomes ionized
    • …
    corecore