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beam tubes to Siemens KPY-14 absolute pressure sensors previously calibrated at 1.8 K (table 1). OCR Output
locations 275 mm, 630 mm and 990 mm from one end and communicate pressures developed around the
diameter 2.5 mm. Emerging radially these tubes are welded flush with the beam tube extemal stuface at
mm, 44.5 mm and 46 mm, were equipped internally with 3 capillaries of equal length and intemal
provoked. Each of three stainless steel beam tubes, 1.26 m long with nominal extemal diameters 42.5
series of quenches at different excitation currents and under different rates of energy extraction have been
equipped with instrumented beam tubes, lowered into a vertical cryostat and cooled to 1.8 K where a

A twin aperture LHC model magnet, 1.21 m long with 50 mm aperture diameters [4] has been
at magnet midlength and in the two end volumes (figure 2).
beam pipe diameters of 70.5 mm. During quench, pressure transients were recorded in the annular space
Aperture Prototype (TAP) [2,3]. Its magnetic length is 9.1 m and it has aperture diameters of 75 mm and
Pressure transients due to quench from different excitation crurents have been measured on the Twin

MEASUREMENTS

with measurements performed on a short 1 m model and a 10 m long twin aperture dipole prototype.
peak is presented. The study was made by means of a simulation model, and the results are compared
trend is towards increasing magnet length. The effect of magnet length and the radial gap on the pressure

The final design of the LHC dipole magnet is at present not fully finalised, however the current
pipe diameter, are fundamental geometrical design parameters affecting the pressure transients.
The magnet length and the radial gap between the beam pipe and the windings, defined by the outer beam
tube and the pressure rise in the end volumes defines the size and the response time of the relief valve.
dipole. Analysis of both pressure transients is important, the initial peak may cause buckling of the beam
measurements of these pressure transients provoked by a quench occurring in a 10 m long LHC prototype
rise in the end volumes and later a decline due to opening of the relief valve. Figure 2 shows
of several MPa and a rise time of a few tenths of a second, and is followed by a more gradual pressure
thermo-hydraulic process gives rise to a pressure peak at the midlength of the magnet with a magnitude
the end volumes of the cryostat helium vessel, where it is finally discharged through a relief valve. This
windings and to the annular space around the beam tubes (figure 1), causing expansion and axial flow to
within a few tenths of a second. A fraction of this energy is transferred to the helium inside the porous
transition, called quench, where the stored energy, of several MJ per magnet, is dissipated in the windings

While ramping up the current and during normal operation, a dipole may undergo resistive
diameter with an aperture diameter of 50 mm.
helium at 1.9 K and 0.1 MPa. The present prototype dipole magnets are about 10 m long, 560 mm in
superconducting magnets using NbTi-conductors and operating in static baths of pressurised superfluid
work. The collider, operating in the TeV-range, will consist of a single ring of twin-aperture
The Large Hadron Collider (LHC) at CERN [1] is currently undergoing design studies and development

INTRODUCTION

on a short model and on a quasi·full scale prototype of the LHC dipoles.
pipe diameter. Results of simulations are compared to measurements performed
study the influence of geometrical parameters, such as magnet length and beam
thermo-hydraulic model aiming at simulation of the quench pressure peak and
peak (several MPa) at the midlength of the magnet. We present a one-dimensional
the beam tubes, causing expansion and axial flow. This results in a fast pressure
fraction of this energy is transferred to the helium inside the windings and around
stored energy is dissipated in the winding within a few tenths of a second. A
In case of resistive transition of a LHC superconducting magnet ("quench"), the
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pressure peaks in quenches of the long and short magnets can be simulated within an accuracy of 10%. OCR Output
With an multiplication factor of 4.3, which gives a realistic value of the heat transfer area, the

factor had the value of 5.2 in all three simulations.
the fact that the propagation of the quench in the winding is not taken into account. The multiplication
the peak pressure. The difference in rise time between measurements and simulations is probably due to
radial gaps. IO is the quench current, Edgpoge the stored energy in one dipole, tygse the rise time and Pmax

Table 1 shows measurements compared with simulations on the short dipole model with different
simulated. The multiplication factor of the geometrical heat transfer area was 4.
rise time, between initiation of quench and peak pressure, was measured at 150 ms, slightly faster than
figure 2. The measured pressure transient in the end volumes and the current decay are also plotted. The
The measured and simulated pressure peak for the TAP at a quench current of 9505 A are shown in

RESULTS

considered. The thermo-physical properties of helium are determined using HEPAK [7].
the supercritical state prevails almost immediately after the quench. No venting through a relief valve is
Thermal conduction in the helium is neglected, since the conductivity of supercritical helium is low and
number in accordance with measurements of friction factor carried out on the short dipole model.
not modelled. Viscous friction due to flow is taken into account, calculated as function of Reynolds

Expulsion of the helium from the porous winding into the annular space around the beam tube is
the cable insulation.
the heat transfer, the growth of the heat transfer area as a function of time and the thermal conductivity of
parameter in the model. The factor combines several uncertainties, the surface of the cable taking part in
the superconducting cable. This area is multiplied by a chosen multiplication factor, the only free
cable insulation. The geometrical heat transfer area is the surface of the cylindrical aperture occupied by
depending on the winding temperature and limited by the thermal conductivity of the superconducting
transferred from the winding to the helium by means of a temperature dependent heat transfer coefficient,
developed across the winding, taking into account energy extraction in extemal resistors. Energy is
The energy dissipation in the winding is calculated from the measured current decay and the voltage
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Helium flow:

(1-4), discretized by the finite difference method in an implicit scheme and solved iteratively [5,6].
govemin g equations are partial differential equations of continuity, momentum and energy conservation
around the beam tube and the winding is modelled as a tube with equivalent hydraulic diameter. The
modelled, the windings are considered as lumped, with uniform energy dissipation. The armular space
shown schematically in figure 1. Since the spatial propagation of the quench in the windings is not
the beam tube into the two end volumes are simulated by an one-dimensional thermo~hydraulic model, as
The energy dissipation in the dipole winding and the axial helium flow through the annular space around

SIMULATION CODE
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power transfer from winding to helium p density of helium
internal power conversion A flow friction coefficient
pressure a multiplication factor
mass of winding
heat transfer coefficient x axial coordinate

u velocityspecific intemal energy of helium
D h hydraulic diameter Ts temperature of winding
c specific heat capacity of winding Tb bulk temperature of helium

t timeA geometric heat transfer area

SYMBOLS

contributions conceming the quench propagation process.
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bulk volume of the helium vessel.
length by adding radial venting channels connecting the annular space around the beam tube with the
tubes. Another possible way to limit the pressure peak in long magnets would be to limit their effective
magnet length. The pressure peak can thus be limited by increasing the annular space around the beam
frictional pressure drop increases in inverse proportion to the hydraulic diameter and proportionally to the
and the winding. The goveming equation of the pressure rise, the momentum equation, shows that the
The pressure peak shows a strong dependence on magnet length and radial gap between the beam tube

CONCLUSION S

in the total pressure rise.
model (table 1). The simulations show that the friction term largely dominates over the acceleration term
pressure as a function of radial gap shows the same characteristic curve as measured on the short dipole
quench of the TAP magnet at 9505 A, are shown in figure 3 and 4 respectively. The evolution of peak

The simulated pressure peak as function of the radial gap and the magnet length, scaled from a

3.60 l20()0 187 40 0.19 I 7.20 76 0.21

2.60 l20()0 187 40 0.23 I 5.20 79 0.24

1.85 l20()0 187 40 0.29 I 3.70 94 0.29
[mm] [A] [kJ] [ms] [MPa] I [mm] [ms] [MPa]

Radial gap I0 Emagn zrise Pmax I Dh —trise Pmax

imulationsMeasurements

Table 1 Measurements and simulations on quenches of the short dipole model



magnet
radial gap, scaled from the TAP magnet magnet length, scaled from the TAP

Figure 3 Calculated pressure peak as function of Figure 4 Calculated pressure peak as function of
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Figure 2 Measurements and simulation on the TAP magnet
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Figure 1 One-dimensional thermo-hydraulic model
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